L(s) = 1 | + (−3.22 − 0.863i)2-s + (1.08 − 2.79i)3-s + (6.18 + 3.57i)4-s + (−4.88 − 1.04i)5-s + (−5.91 + 8.07i)6-s + (−8.79 − 2.35i)7-s + (−7.41 − 7.41i)8-s + (−6.64 − 6.07i)9-s + (14.8 + 7.58i)10-s + (1.02 + 1.77i)11-s + (16.7 − 13.4i)12-s + (4.18 − 1.12i)13-s + (26.3 + 15.2i)14-s + (−8.22 + 12.5i)15-s + (3.22 + 5.57i)16-s + (17.1 − 17.1i)17-s + ⋯ |
L(s) = 1 | + (−1.61 − 0.431i)2-s + (0.362 − 0.932i)3-s + (1.54 + 0.892i)4-s + (−0.977 − 0.208i)5-s + (−0.986 + 1.34i)6-s + (−1.25 − 0.336i)7-s + (−0.927 − 0.927i)8-s + (−0.737 − 0.675i)9-s + (1.48 + 0.758i)10-s + (0.0930 + 0.161i)11-s + (1.39 − 1.11i)12-s + (0.321 − 0.0862i)13-s + (1.88 + 1.08i)14-s + (−0.548 + 0.836i)15-s + (0.201 + 0.348i)16-s + (1.00 − 1.00i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 + 0.238i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.971 + 0.238i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0406383 - 0.336143i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0406383 - 0.336143i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.08 + 2.79i)T \) |
| 5 | \( 1 + (4.88 + 1.04i)T \) |
good | 2 | \( 1 + (3.22 + 0.863i)T + (3.46 + 2i)T^{2} \) |
| 7 | \( 1 + (8.79 + 2.35i)T + (42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (-1.02 - 1.77i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-4.18 + 1.12i)T + (146. - 84.5i)T^{2} \) |
| 17 | \( 1 + (-17.1 + 17.1i)T - 289iT^{2} \) |
| 19 | \( 1 + 18.6iT - 361T^{2} \) |
| 23 | \( 1 + (11.5 - 3.08i)T + (458. - 264.5i)T^{2} \) |
| 29 | \( 1 + (-19.4 + 11.2i)T + (420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-11.9 + 20.6i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (33.2 - 33.2i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-2.15 + 3.73i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-8.15 + 30.4i)T + (-1.60e3 - 924.5i)T^{2} \) |
| 47 | \( 1 + (0.838 + 0.224i)T + (1.91e3 + 1.10e3i)T^{2} \) |
| 53 | \( 1 + (3.33 + 3.33i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (66.3 + 38.2i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-35.3 - 61.2i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-5.59 - 20.8i)T + (-3.88e3 + 2.24e3i)T^{2} \) |
| 71 | \( 1 + 28.6T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-48.1 - 48.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + (0.201 - 0.116i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-41.1 + 153. i)T + (-5.96e3 - 3.44e3i)T^{2} \) |
| 89 | \( 1 - 103. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-69.7 - 18.6i)T + (8.14e3 + 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.57268649895245427781330644693, −13.67878679620389046984070015632, −12.34089183864497649773623653368, −11.51030747660983714678207045266, −9.955073255451270083893470361007, −8.855589758395311567468516508338, −7.71612950834384212933265118849, −6.80869404128181022893827691997, −3.08070734412108695996445900064, −0.57053455152977856133521748765,
3.51931557248201998018766181665, 6.23906578099585294868140547233, 7.87314263355238579058609342242, 8.789218436905404506358130525330, 9.954188156580867648381682009082, 10.73748782817189492183858814685, 12.30089303369130487846259545695, 14.44693726568797066594118551670, 15.63548596176604047588553836921, 16.13035593503575297361664060069