L(s) = 1 | + 2.64·2-s + 3.00·4-s + (−2.64 − 4.24i)5-s + 11.2i·7-s − 2.64·8-s + (−7.00 − 11.2i)10-s − 4.24i·11-s − 11.2i·13-s + 29.6i·14-s − 18.9·16-s + 10.5·17-s + 20·19-s + (−7.93 − 12.7i)20-s − 11.2i·22-s − 5.29·23-s + ⋯ |
L(s) = 1 | + 1.32·2-s + 0.750·4-s + (−0.529 − 0.848i)5-s + 1.60i·7-s − 0.330·8-s + (−0.700 − 1.12i)10-s − 0.385i·11-s − 0.863i·13-s + 2.12i·14-s − 1.18·16-s + 0.622·17-s + 1.05·19-s + (−0.396 − 0.636i)20-s − 0.510i·22-s − 0.230·23-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(0.998+0.0578i)Λ(3−s)
Λ(s)=(=(45s/2ΓC(s+1)L(s)(0.998+0.0578i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
0.998+0.0578i
|
Analytic conductor: |
1.22616 |
Root analytic conductor: |
1.10732 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(44,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :1), 0.998+0.0578i)
|
Particular Values
L(23) |
≈ |
1.77099−0.0512677i |
L(21) |
≈ |
1.77099−0.0512677i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(2.64+4.24i)T |
good | 2 | 1−2.64T+4T2 |
| 7 | 1−11.2iT−49T2 |
| 11 | 1+4.24iT−121T2 |
| 13 | 1+11.2iT−169T2 |
| 17 | 1−10.5T+289T2 |
| 19 | 1−20T+361T2 |
| 23 | 1+5.29T+529T2 |
| 29 | 1−8.48iT−841T2 |
| 31 | 1−26T+961T2 |
| 37 | 1+33.6iT−1.36e3T2 |
| 41 | 1−55.1iT−1.68e3T2 |
| 43 | 1+22.4iT−1.84e3T2 |
| 47 | 1+21.1T+2.20e3T2 |
| 53 | 1+84.6T+2.80e3T2 |
| 59 | 1+46.6iT−3.48e3T2 |
| 61 | 1+22T+3.72e3T2 |
| 67 | 1−89.7iT−4.48e3T2 |
| 71 | 1−50.9iT−5.04e3T2 |
| 73 | 1+67.3iT−5.32e3T2 |
| 79 | 1−14T+6.24e3T2 |
| 83 | 1−74.0T+6.88e3T2 |
| 89 | 1+89.0iT−7.92e3T2 |
| 97 | 1+22.4iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.49101780229463246507384250784, −14.45756399092038643472564129422, −13.09973144649670298051484729971, −12.28627678179624555870757487878, −11.57831972666020740592539212873, −9.341901056857532974839818189989, −8.140350270184260463931036343619, −5.86672440114740604001970269545, −5.01968940999722986554726678164, −3.17327027439020235664910501686,
3.42855380757235375829437411522, 4.54391709569482988669188469873, 6.52930374092958023186628093231, 7.58003047582494965399361367001, 9.895381696635400358434481100478, 11.20332124666384339933741293856, 12.21153878685675940118220140065, 13.75953545220165563995112091797, 14.09907473386160379182323141455, 15.27170911640132820099956290985