Properties

Label 2-448-7.6-c4-0-22
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $46.3097$
Root an. cond. $6.80512$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 49·7-s + 81·9-s − 206·11-s + 734·23-s + 625·25-s − 1.23e3·29-s + 1.29e3·37-s − 334·43-s + 2.40e3·49-s + 5.58e3·53-s − 3.96e3·63-s + 4.94e3·67-s − 2.91e3·71-s + 1.00e4·77-s + 3.64e3·79-s + 6.56e3·81-s − 1.66e4·99-s + 1.16e4·107-s + 1.25e4·109-s + 2.37e4·113-s + ⋯
L(s)  = 1  − 7-s + 9-s − 1.70·11-s + 1.38·23-s + 25-s − 1.46·29-s + 0.945·37-s − 0.180·43-s + 49-s + 1.98·53-s − 63-s + 1.10·67-s − 0.578·71-s + 1.70·77-s + 0.584·79-s + 81-s − 1.70·99-s + 1.02·107-s + 1.05·109-s + 1.85·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(46.3097\)
Root analytic conductor: \(6.80512\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{448} (321, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.576279695\)
\(L(\frac12)\) \(\approx\) \(1.576279695\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p^{2} T \)
good3 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
5 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
11 \( 1 + 206 T + p^{4} T^{2} \)
13 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
17 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
19 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
23 \( 1 - 734 T + p^{4} T^{2} \)
29 \( 1 + 1234 T + p^{4} T^{2} \)
31 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
37 \( 1 - 1294 T + p^{4} T^{2} \)
41 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
43 \( 1 + 334 T + p^{4} T^{2} \)
47 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
53 \( 1 - 5582 T + p^{4} T^{2} \)
59 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
61 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
67 \( 1 - 4946 T + p^{4} T^{2} \)
71 \( 1 + 2914 T + p^{4} T^{2} \)
73 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
79 \( 1 - 3646 T + p^{4} T^{2} \)
83 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
89 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
97 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40400159871017845817282482464, −9.713555352646143021945384394052, −8.761704619550267261495116396398, −7.53174631305035294399807229535, −6.94672474132811524374364967916, −5.70528087362642943563972725868, −4.74674742124166984954658261881, −3.44217921918032755984935478283, −2.39148155442852206233792784718, −0.69647545293277281336935830312, 0.69647545293277281336935830312, 2.39148155442852206233792784718, 3.44217921918032755984935478283, 4.74674742124166984954658261881, 5.70528087362642943563972725868, 6.94672474132811524374364967916, 7.53174631305035294399807229535, 8.761704619550267261495116396398, 9.713555352646143021945384394052, 10.40400159871017845817282482464

Graph of the $Z$-function along the critical line