Properties

Label 2-448-7.6-c2-0-13
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $12.2071$
Root an. cond. $3.49386$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7·7-s + 9·9-s + 6·11-s + 18·23-s + 25·25-s + 54·29-s + 38·37-s − 58·43-s + 49·49-s + 6·53-s − 63·63-s + 118·67-s + 114·71-s − 42·77-s − 94·79-s + 81·81-s + 54·99-s − 186·107-s − 106·109-s − 222·113-s + ⋯
L(s)  = 1  − 7-s + 9-s + 6/11·11-s + 0.782·23-s + 25-s + 1.86·29-s + 1.02·37-s − 1.34·43-s + 49-s + 6/53·53-s − 63-s + 1.76·67-s + 1.60·71-s − 0.545·77-s − 1.18·79-s + 81-s + 6/11·99-s − 1.73·107-s − 0.972·109-s − 1.96·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(12.2071\)
Root analytic conductor: \(3.49386\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{448} (321, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.740784986\)
\(L(\frac12)\) \(\approx\) \(1.740784986\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p T \)
good3 \( ( 1 - p T )( 1 + p T ) \)
5 \( ( 1 - p T )( 1 + p T ) \)
11 \( 1 - 6 T + p^{2} T^{2} \)
13 \( ( 1 - p T )( 1 + p T ) \)
17 \( ( 1 - p T )( 1 + p T ) \)
19 \( ( 1 - p T )( 1 + p T ) \)
23 \( 1 - 18 T + p^{2} T^{2} \)
29 \( 1 - 54 T + p^{2} T^{2} \)
31 \( ( 1 - p T )( 1 + p T ) \)
37 \( 1 - 38 T + p^{2} T^{2} \)
41 \( ( 1 - p T )( 1 + p T ) \)
43 \( 1 + 58 T + p^{2} T^{2} \)
47 \( ( 1 - p T )( 1 + p T ) \)
53 \( 1 - 6 T + p^{2} T^{2} \)
59 \( ( 1 - p T )( 1 + p T ) \)
61 \( ( 1 - p T )( 1 + p T ) \)
67 \( 1 - 118 T + p^{2} T^{2} \)
71 \( 1 - 114 T + p^{2} T^{2} \)
73 \( ( 1 - p T )( 1 + p T ) \)
79 \( 1 + 94 T + p^{2} T^{2} \)
83 \( ( 1 - p T )( 1 + p T ) \)
89 \( ( 1 - p T )( 1 + p T ) \)
97 \( ( 1 - p T )( 1 + p T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73830918317970545877288914776, −9.941189933791150644797200698557, −9.243419839209355245147620139421, −8.199905250505154561781615266109, −6.88132869855223367837814385374, −6.52801920420788727038954527995, −5.04620871040743103669404843060, −3.96498699796848182717686340118, −2.79938302349374874815625336341, −1.04275533797669960242719035770, 1.04275533797669960242719035770, 2.79938302349374874815625336341, 3.96498699796848182717686340118, 5.04620871040743103669404843060, 6.52801920420788727038954527995, 6.88132869855223367837814385374, 8.199905250505154561781615266109, 9.243419839209355245147620139421, 9.941189933791150644797200698557, 10.73830918317970545877288914776

Graph of the $Z$-function along the critical line