L(s) = 1 | + (−1.00 − 1.00i)3-s + (4.03 − 4.03i)5-s + (−6.50 − 2.59i)7-s − 6.99i·9-s + (6.25 + 6.25i)11-s + (−4.97 − 4.97i)13-s − 8.08·15-s + 5.44i·17-s + (−17.3 − 17.3i)19-s + (3.91 + 9.10i)21-s + 8.07i·23-s − 7.62i·25-s + (−16.0 + 16.0i)27-s + (−27.3 + 27.3i)29-s − 53.1i·31-s + ⋯ |
L(s) = 1 | + (−0.333 − 0.333i)3-s + (0.807 − 0.807i)5-s + (−0.928 − 0.370i)7-s − 0.777i·9-s + (0.568 + 0.568i)11-s + (−0.382 − 0.382i)13-s − 0.539·15-s + 0.320i·17-s + (−0.911 − 0.911i)19-s + (0.186 + 0.433i)21-s + 0.351i·23-s − 0.305i·25-s + (−0.593 + 0.593i)27-s + (−0.943 + 0.943i)29-s − 1.71i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.919 + 0.392i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.919 + 0.392i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.9738835386\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9738835386\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (6.50 + 2.59i)T \) |
good | 3 | \( 1 + (1.00 + 1.00i)T + 9iT^{2} \) |
| 5 | \( 1 + (-4.03 + 4.03i)T - 25iT^{2} \) |
| 11 | \( 1 + (-6.25 - 6.25i)T + 121iT^{2} \) |
| 13 | \( 1 + (4.97 + 4.97i)T + 169iT^{2} \) |
| 17 | \( 1 - 5.44iT - 289T^{2} \) |
| 19 | \( 1 + (17.3 + 17.3i)T + 361iT^{2} \) |
| 23 | \( 1 - 8.07iT - 529T^{2} \) |
| 29 | \( 1 + (27.3 - 27.3i)T - 841iT^{2} \) |
| 31 | \( 1 + 53.1iT - 961T^{2} \) |
| 37 | \( 1 + (-13.0 - 13.0i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 3.54T + 1.68e3T^{2} \) |
| 43 | \( 1 + (13.9 + 13.9i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + 38.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (51.8 + 51.8i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (56.4 - 56.4i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + (84.3 + 84.3i)T + 3.72e3iT^{2} \) |
| 67 | \( 1 + (0.603 - 0.603i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 78.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 79.7T + 5.32e3T^{2} \) |
| 79 | \( 1 - 85.2T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-5.96 - 5.96i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 163.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 89.6iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35636039120590850106433270323, −9.364136295241965210932886894914, −9.130783616926109150049296598750, −7.56520910881885869491643939763, −6.57742448136239431056760355695, −5.93432449892660797797614105044, −4.73646742006774319054106715572, −3.49933673048141668051860944674, −1.83126216193808443791202079306, −0.40117155414364728735740425493,
2.05737147299026876580340810816, 3.17772818975491037658846642647, 4.54235879555331155898794948052, 5.92680708193478509550029000330, 6.29740980156355601940583032245, 7.47041974351548299595122533881, 8.773321364433195694926171040155, 9.669590567702417461203869584864, 10.36909014050302359882785276245, 11.05206224192616210940296882166