L(s) = 1 | + (3.53 + 3.53i)3-s + (−0.208 + 0.208i)5-s + (1.63 − 6.80i)7-s + 15.9i·9-s + (−1.33 − 1.33i)11-s + (11.8 + 11.8i)13-s − 1.47·15-s + 15.6i·17-s + (13.1 + 13.1i)19-s + (29.8 − 18.2i)21-s + 14.3i·23-s + 24.9i·25-s + (−24.6 + 24.6i)27-s + (9.53 − 9.53i)29-s − 50.1i·31-s + ⋯ |
L(s) = 1 | + (1.17 + 1.17i)3-s + (−0.0417 + 0.0417i)5-s + (0.233 − 0.972i)7-s + 1.77i·9-s + (−0.121 − 0.121i)11-s + (0.911 + 0.911i)13-s − 0.0983·15-s + 0.922i·17-s + (0.690 + 0.690i)19-s + (1.42 − 0.870i)21-s + 0.622i·23-s + 0.996i·25-s + (−0.914 + 0.914i)27-s + (0.328 − 0.328i)29-s − 1.61i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.224 - 0.974i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.224 - 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.655929415\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.655929415\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1.63 + 6.80i)T \) |
good | 3 | \( 1 + (-3.53 - 3.53i)T + 9iT^{2} \) |
| 5 | \( 1 + (0.208 - 0.208i)T - 25iT^{2} \) |
| 11 | \( 1 + (1.33 + 1.33i)T + 121iT^{2} \) |
| 13 | \( 1 + (-11.8 - 11.8i)T + 169iT^{2} \) |
| 17 | \( 1 - 15.6iT - 289T^{2} \) |
| 19 | \( 1 + (-13.1 - 13.1i)T + 361iT^{2} \) |
| 23 | \( 1 - 14.3iT - 529T^{2} \) |
| 29 | \( 1 + (-9.53 + 9.53i)T - 841iT^{2} \) |
| 31 | \( 1 + 50.1iT - 961T^{2} \) |
| 37 | \( 1 + (-38.9 - 38.9i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 54.7T + 1.68e3T^{2} \) |
| 43 | \( 1 + (23.6 + 23.6i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + 8.49iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (63.8 + 63.8i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (-57.4 + 57.4i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + (40.2 + 40.2i)T + 3.72e3iT^{2} \) |
| 67 | \( 1 + (-9.59 + 9.59i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 7.82iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 86.7T + 5.32e3T^{2} \) |
| 79 | \( 1 - 56.6T + 6.24e3T^{2} \) |
| 83 | \( 1 + (64.2 + 64.2i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 158.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 136. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91665561499832305845724364140, −9.953722923582311435185877295652, −9.466199467499644490176048896270, −8.321418836167728818739960568387, −7.82428601240762205568255762776, −6.45262774888666232261237257550, −5.00082184870766086460616237197, −3.89227175279591187942021769533, −3.47284963141922077017864326374, −1.72764432285912057970309967401,
1.08651875917246339502549120245, 2.50053595095779540239562490167, 3.18462264805541690864694267358, 4.96866440705732152317370744278, 6.20117488436861559097370614496, 7.14791976121679285293134461287, 8.109679722355555881580750133102, 8.645909992792530944327244834982, 9.428731470205687996523993852357, 10.74283107055367637113792793077