| L(s) = 1 | + (−2.23 + 2.23i)3-s + (0.584 − 0.584i)5-s + (1.82 − 1.91i)7-s − 6.98i·9-s + (2 − 2i)11-s + (2.91 + 2.91i)13-s + 2.61i·15-s − 2.66i·17-s + (−0.319 + 0.319i)19-s + (0.198 + 8.35i)21-s + 3.27·23-s + 4.31i·25-s + (8.90 + 8.90i)27-s + (−2.04 + 2.04i)29-s − 2.52·31-s + ⋯ |
| L(s) = 1 | + (−1.29 + 1.29i)3-s + (0.261 − 0.261i)5-s + (0.690 − 0.723i)7-s − 2.32i·9-s + (0.603 − 0.603i)11-s + (0.807 + 0.807i)13-s + 0.673i·15-s − 0.645i·17-s + (−0.0733 + 0.0733i)19-s + (0.0432 + 1.82i)21-s + 0.683·23-s + 0.863i·25-s + (1.71 + 1.71i)27-s + (−0.379 + 0.379i)29-s − 0.453·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.877 - 0.479i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.877 - 0.479i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.04632 + 0.267187i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.04632 + 0.267187i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1.82 + 1.91i)T \) |
| good | 3 | \( 1 + (2.23 - 2.23i)T - 3iT^{2} \) |
| 5 | \( 1 + (-0.584 + 0.584i)T - 5iT^{2} \) |
| 11 | \( 1 + (-2 + 2i)T - 11iT^{2} \) |
| 13 | \( 1 + (-2.91 - 2.91i)T + 13iT^{2} \) |
| 17 | \( 1 + 2.66iT - 17T^{2} \) |
| 19 | \( 1 + (0.319 - 0.319i)T - 19iT^{2} \) |
| 23 | \( 1 - 3.27T + 23T^{2} \) |
| 29 | \( 1 + (2.04 - 2.04i)T - 29iT^{2} \) |
| 31 | \( 1 + 2.52T + 31T^{2} \) |
| 37 | \( 1 + (-1.70 - 1.70i)T + 37iT^{2} \) |
| 41 | \( 1 - 11.9T + 41T^{2} \) |
| 43 | \( 1 + (-3.27 + 3.27i)T - 43iT^{2} \) |
| 47 | \( 1 - 9.96T + 47T^{2} \) |
| 53 | \( 1 + (2.37 + 2.37i)T + 53iT^{2} \) |
| 59 | \( 1 + (4.14 + 4.14i)T + 59iT^{2} \) |
| 61 | \( 1 + (4.52 + 4.52i)T + 61iT^{2} \) |
| 67 | \( 1 + (-4.37 - 4.37i)T + 67iT^{2} \) |
| 71 | \( 1 + 5.14T + 71T^{2} \) |
| 73 | \( 1 + 6.99T + 73T^{2} \) |
| 79 | \( 1 - 11.2iT - 79T^{2} \) |
| 83 | \( 1 + (-5.39 + 5.39i)T - 83iT^{2} \) |
| 89 | \( 1 + 1.05T + 89T^{2} \) |
| 97 | \( 1 + 13.2iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21464723382686436569581090340, −10.52996296420731146109053906238, −9.381462397449774572769293561097, −8.917374393365774123220433617030, −7.28431072819060485901910960947, −6.20413099157681589646450906888, −5.36119976179975481734639962655, −4.43268547651481900535825099551, −3.66509442176143800464894213006, −1.06650654246536125367966940689,
1.20024364246748373416425444053, 2.37705275802625668385954330958, 4.49329495451580735193977944968, 5.79553451214416603003016243245, 6.07509228949720337302822897894, 7.25901124671968314038624350868, 8.007187696368482929848156680529, 9.127641840588047927528425913271, 10.63996963225675392019217944193, 11.04827741221209052874568326837