| L(s) = 1 | + (1.03 − 1.03i)3-s + (−1.68 + 1.68i)5-s + (−1.38 + 2.25i)7-s + 0.851i·9-s + (2 − 2i)11-s + (4.80 + 4.80i)13-s + 3.49i·15-s + 1.13i·17-s + (−1.21 + 1.21i)19-s + (0.900 + 3.77i)21-s + 1.33·23-s − 0.690i·25-s + (3.99 + 3.99i)27-s + (5.26 − 5.26i)29-s − 8.31·31-s + ⋯ |
| L(s) = 1 | + (0.598 − 0.598i)3-s + (−0.754 + 0.754i)5-s + (−0.523 + 0.851i)7-s + 0.283i·9-s + (0.603 − 0.603i)11-s + (1.33 + 1.33i)13-s + 0.902i·15-s + 0.275i·17-s + (−0.279 + 0.279i)19-s + (0.196 + 0.823i)21-s + 0.278·23-s − 0.138i·25-s + (0.768 + 0.768i)27-s + (0.978 − 0.978i)29-s − 1.49·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.28358 + 0.620353i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.28358 + 0.620353i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (1.38 - 2.25i)T \) |
| good | 3 | \( 1 + (-1.03 + 1.03i)T - 3iT^{2} \) |
| 5 | \( 1 + (1.68 - 1.68i)T - 5iT^{2} \) |
| 11 | \( 1 + (-2 + 2i)T - 11iT^{2} \) |
| 13 | \( 1 + (-4.80 - 4.80i)T + 13iT^{2} \) |
| 17 | \( 1 - 1.13iT - 17T^{2} \) |
| 19 | \( 1 + (1.21 - 1.21i)T - 19iT^{2} \) |
| 23 | \( 1 - 1.33T + 23T^{2} \) |
| 29 | \( 1 + (-5.26 + 5.26i)T - 29iT^{2} \) |
| 31 | \( 1 + 8.31T + 31T^{2} \) |
| 37 | \( 1 + (4.18 + 4.18i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.63T + 41T^{2} \) |
| 43 | \( 1 + (-1.33 + 1.33i)T - 43iT^{2} \) |
| 47 | \( 1 - 1.93T + 47T^{2} \) |
| 53 | \( 1 + (-6.34 - 6.34i)T + 53iT^{2} \) |
| 59 | \( 1 + (-3.29 - 3.29i)T + 59iT^{2} \) |
| 61 | \( 1 + (2.04 + 2.04i)T + 61iT^{2} \) |
| 67 | \( 1 + (0.107 + 0.107i)T + 67iT^{2} \) |
| 71 | \( 1 + 13.0T + 71T^{2} \) |
| 73 | \( 1 + 6.24T + 73T^{2} \) |
| 79 | \( 1 - 4.51iT - 79T^{2} \) |
| 83 | \( 1 + (-9.71 + 9.71i)T - 83iT^{2} \) |
| 89 | \( 1 - 11.6T + 89T^{2} \) |
| 97 | \( 1 + 3.23iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33777565671249955442103066850, −10.50767171404151511668469692415, −8.958708927616188585344766170359, −8.699116507815565329005852836754, −7.52154101042544963310483819942, −6.67471865241298012088768708879, −5.85400908111333711399134985864, −4.04997492804769286175764408972, −3.16193430909162295872297912011, −1.86550250507541212340547307237,
0.907601649639233487005939117788, 3.29701810697850506536171614244, 3.88618209646890317006153145244, 4.90327246632577324681272104517, 6.37605401574456047608773119772, 7.40046113969284079425273858552, 8.506229119880000694733019513092, 8.992062971414613485393918059511, 10.08439306989848501730808411592, 10.75855498788760670720694204324