| L(s) = 1 | + (−2.44 + 2.44i)5-s + (1 − 2.44i)7-s + 3i·9-s + (−1 + i)11-s + (−2.44 − 2.44i)13-s + 4.89i·17-s + (−4.89 + 4.89i)19-s − 4·23-s − 6.99i·25-s + (−3 + 3i)29-s − 4.89·31-s + (3.55 + 8.44i)35-s + (5 + 5i)37-s + 4.89·41-s + (5 − 5i)43-s + ⋯ |
| L(s) = 1 | + (−1.09 + 1.09i)5-s + (0.377 − 0.925i)7-s + i·9-s + (−0.301 + 0.301i)11-s + (−0.679 − 0.679i)13-s + 1.18i·17-s + (−1.12 + 1.12i)19-s − 0.834·23-s − 1.39i·25-s + (−0.557 + 0.557i)29-s − 0.879·31-s + (0.600 + 1.42i)35-s + (0.821 + 0.821i)37-s + 0.765·41-s + (0.762 − 0.762i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.710 - 0.703i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.250569 + 0.609319i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.250569 + 0.609319i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (-1 + 2.44i)T \) |
| good | 3 | \( 1 - 3iT^{2} \) |
| 5 | \( 1 + (2.44 - 2.44i)T - 5iT^{2} \) |
| 11 | \( 1 + (1 - i)T - 11iT^{2} \) |
| 13 | \( 1 + (2.44 + 2.44i)T + 13iT^{2} \) |
| 17 | \( 1 - 4.89iT - 17T^{2} \) |
| 19 | \( 1 + (4.89 - 4.89i)T - 19iT^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 + (3 - 3i)T - 29iT^{2} \) |
| 31 | \( 1 + 4.89T + 31T^{2} \) |
| 37 | \( 1 + (-5 - 5i)T + 37iT^{2} \) |
| 41 | \( 1 - 4.89T + 41T^{2} \) |
| 43 | \( 1 + (-5 + 5i)T - 43iT^{2} \) |
| 47 | \( 1 - 4.89T + 47T^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 + (-4.89 - 4.89i)T + 59iT^{2} \) |
| 61 | \( 1 + (-2.44 - 2.44i)T + 61iT^{2} \) |
| 67 | \( 1 + (5 + 5i)T + 67iT^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 - 9.79T + 73T^{2} \) |
| 79 | \( 1 - 4iT - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 - 4.89iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10413863478374454831067611661, −10.61839176702092757186078008986, −10.11831261469570580711498185561, −8.268148703722332397247435283334, −7.74943421172803626168589347583, −7.13589588782950876192318367053, −5.82806740716417429767797196068, −4.41082396461164857336095671293, −3.65168361519705358505310034914, −2.16610385205557806691511052835,
0.39574006986261279509391240487, 2.44230968382041748701932054782, 4.03973201023045790626887351144, 4.81293380338181100673721994054, 5.91903418261671253179426776646, 7.21628753749042613334592326635, 8.122338433040946297856386497583, 9.094963027553661249744154547068, 9.373919491995049782927842159920, 11.16206859475083615479126115834