L(s) = 1 | + (−1.11 + 1.11i)3-s + (5.47 + 5.47i)5-s + (3.11 + 6.26i)7-s + 6.53i·9-s + (−2.57 + 2.57i)11-s + (−11.1 + 11.1i)13-s − 12.1·15-s − 24.6i·17-s + (10.9 − 10.9i)19-s + (−10.4 − 3.49i)21-s − 10.3i·23-s + 34.9i·25-s + (−17.2 − 17.2i)27-s + (24.5 + 24.5i)29-s − 14.5i·31-s + ⋯ |
L(s) = 1 | + (−0.370 + 0.370i)3-s + (1.09 + 1.09i)5-s + (0.445 + 0.895i)7-s + 0.725i·9-s + (−0.233 + 0.233i)11-s + (−0.858 + 0.858i)13-s − 0.811·15-s − 1.44i·17-s + (0.578 − 0.578i)19-s + (−0.496 − 0.166i)21-s − 0.451i·23-s + 1.39i·25-s + (−0.639 − 0.639i)27-s + (0.846 + 0.846i)29-s − 0.468i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.631 - 0.775i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.631 - 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.663119142\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.663119142\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-3.11 - 6.26i)T \) |
good | 3 | \( 1 + (1.11 - 1.11i)T - 9iT^{2} \) |
| 5 | \( 1 + (-5.47 - 5.47i)T + 25iT^{2} \) |
| 11 | \( 1 + (2.57 - 2.57i)T - 121iT^{2} \) |
| 13 | \( 1 + (11.1 - 11.1i)T - 169iT^{2} \) |
| 17 | \( 1 + 24.6iT - 289T^{2} \) |
| 19 | \( 1 + (-10.9 + 10.9i)T - 361iT^{2} \) |
| 23 | \( 1 + 10.3iT - 529T^{2} \) |
| 29 | \( 1 + (-24.5 - 24.5i)T + 841iT^{2} \) |
| 31 | \( 1 + 14.5iT - 961T^{2} \) |
| 37 | \( 1 + (2.55 - 2.55i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 48.3T + 1.68e3T^{2} \) |
| 43 | \( 1 + (46.0 - 46.0i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + 19.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (-8.08 + 8.08i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (-61.0 - 61.0i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + (-75.6 + 75.6i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 + (-81.1 - 81.1i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 9.46iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 36.7T + 5.32e3T^{2} \) |
| 79 | \( 1 + 55.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + (42.2 - 42.2i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 8.11T + 7.92e3T^{2} \) |
| 97 | \( 1 + 141. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.34590565929643624606094236116, −10.09799793137765370581105643199, −9.771728470477498546712883920709, −8.644298122401995447729083834779, −7.29274436249106827265624793533, −6.57471519866942664124237404634, −5.30293604769013222072692218074, −4.86711532966485334469251951266, −2.79539582990017617743372327585, −2.11944368147402317737647647436,
0.72659601980389188377187737269, 1.76578030555955628916013039039, 3.64924484804268999252973567392, 5.01316801316159838175293436464, 5.70800582783671591986134239882, 6.71120817875195717404111840492, 7.903366554022321412650912354182, 8.680313256884968410516579851257, 9.950306023648404753111739888392, 10.23661862641318179644149857334