| L(s) = 1 | + (−0.5 + 0.133i)3-s + (−0.866 − 0.232i)5-s + (−1.73 − 2i)7-s + (−2.36 + 1.36i)9-s + (0.767 + 2.86i)11-s + (3.73 + 3.73i)13-s + 0.464·15-s + (−3.23 + 5.59i)17-s + (−0.767 + 2.86i)19-s + (1.13 + 0.767i)21-s + (−3.86 + 2.23i)23-s + (−3.63 − 2.09i)25-s + (2.09 − 2.09i)27-s + (−0.267 − 0.267i)29-s + (1.86 − 3.23i)31-s + ⋯ |
| L(s) = 1 | + (−0.288 + 0.0773i)3-s + (−0.387 − 0.103i)5-s + (−0.654 − 0.755i)7-s + (−0.788 + 0.455i)9-s + (0.231 + 0.864i)11-s + (1.03 + 1.03i)13-s + 0.119·15-s + (−0.783 + 1.35i)17-s + (−0.176 + 0.657i)19-s + (0.247 + 0.167i)21-s + (−0.806 + 0.465i)23-s + (−0.726 − 0.419i)25-s + (0.403 − 0.403i)27-s + (−0.0497 − 0.0497i)29-s + (0.335 − 0.580i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.496 - 0.868i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.496 - 0.868i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.300205 + 0.517489i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.300205 + 0.517489i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (1.73 + 2i)T \) |
| good | 3 | \( 1 + (0.5 - 0.133i)T + (2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (0.866 + 0.232i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (-0.767 - 2.86i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-3.73 - 3.73i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.23 - 5.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.767 - 2.86i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (3.86 - 2.23i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.267 + 0.267i)T + 29iT^{2} \) |
| 31 | \( 1 + (-1.86 + 3.23i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.13 + 0.303i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 4.92iT - 41T^{2} \) |
| 43 | \( 1 + (6.46 - 6.46i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.13 - 3.69i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.06 + 3.96i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-3.03 - 11.3i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.86 + 6.96i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-4.96 + 1.33i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 0.535iT - 71T^{2} \) |
| 73 | \( 1 + (-6.23 - 3.59i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (8.33 + 14.4i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.53 + 1.53i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.5 - 2.59i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 2.92T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.37133117230138458430461840074, −10.55193227063121937087048605763, −9.723262190373063684642897750492, −8.611336664561850667853607198688, −7.80941568450403754568900279315, −6.58717842445407537751557956472, −5.96219296656582741867526358105, −4.35821979345293083055690914896, −3.76438537951813727616763377487, −1.89025449996473466413270251347,
0.37453652361605750937777063427, 2.76220003124366844471508425636, 3.61588784724454165561660084360, 5.26881243596349427223234032556, 6.07710796611901039015105978042, 6.86859940229858690171282895707, 8.357156592722837074529701682864, 8.800762254127290577885859091601, 9.869816197566016799585536569103, 11.11475904959684812894517795057