Properties

Label 2-448-1.1-c7-0-26
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $139.948$
Root an. cond. $11.8299$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 46·3-s + 160·5-s − 343·7-s − 71·9-s + 6.84e3·11-s + 2.90e3·13-s − 7.36e3·15-s + 1.65e4·17-s + 6.71e3·19-s + 1.57e4·21-s − 976·23-s − 5.25e4·25-s + 1.03e5·27-s + 6.16e4·29-s − 6.92e4·31-s − 3.14e5·33-s − 5.48e4·35-s + 5.33e5·37-s − 1.33e5·39-s + 1.83e5·41-s − 9.66e5·43-s − 1.13e4·45-s − 1.90e5·47-s + 1.17e5·49-s − 7.62e5·51-s + 7.85e5·53-s + 1.09e6·55-s + ⋯
L(s)  = 1  − 0.983·3-s + 0.572·5-s − 0.377·7-s − 0.0324·9-s + 1.54·11-s + 0.366·13-s − 0.563·15-s + 0.817·17-s + 0.224·19-s + 0.371·21-s − 0.0167·23-s − 0.672·25-s + 1.01·27-s + 0.469·29-s − 0.417·31-s − 1.52·33-s − 0.216·35-s + 1.73·37-s − 0.360·39-s + 0.415·41-s − 1.85·43-s − 0.0185·45-s − 0.267·47-s + 1/7·49-s − 0.804·51-s + 0.724·53-s + 0.886·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(139.948\)
Root analytic conductor: \(11.8299\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.781987098\)
\(L(\frac12)\) \(\approx\) \(1.781987098\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p^{3} T \)
good3 \( 1 + 46 T + p^{7} T^{2} \)
5 \( 1 - 32 p T + p^{7} T^{2} \)
11 \( 1 - 6840 T + p^{7} T^{2} \)
13 \( 1 - 2900 T + p^{7} T^{2} \)
17 \( 1 - 16566 T + p^{7} T^{2} \)
19 \( 1 - 6718 T + p^{7} T^{2} \)
23 \( 1 + 976 T + p^{7} T^{2} \)
29 \( 1 - 61662 T + p^{7} T^{2} \)
31 \( 1 + 69236 T + p^{7} T^{2} \)
37 \( 1 - 533062 T + p^{7} T^{2} \)
41 \( 1 - 183158 T + p^{7} T^{2} \)
43 \( 1 + 966864 T + p^{7} T^{2} \)
47 \( 1 + 190268 T + p^{7} T^{2} \)
53 \( 1 - 785010 T + p^{7} T^{2} \)
59 \( 1 + 2893594 T + p^{7} T^{2} \)
61 \( 1 - 95896 T + p^{7} T^{2} \)
67 \( 1 - 991644 T + p^{7} T^{2} \)
71 \( 1 - 1068160 T + p^{7} T^{2} \)
73 \( 1 - 2523458 T + p^{7} T^{2} \)
79 \( 1 - 285848 T + p^{7} T^{2} \)
83 \( 1 + 7094938 T + p^{7} T^{2} \)
89 \( 1 + 252390 T + p^{7} T^{2} \)
97 \( 1 + 1824794 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.881902667865003765926069991450, −9.286284878658147234178431291818, −8.146123849897553523425871336962, −6.80306514462331740666517340857, −6.15825491937290577839344558506, −5.48305352764957676706657730415, −4.25117026984354501742247889295, −3.12299746637901274163340036571, −1.59470626777535399499705163279, −0.66916234109943513666935072490, 0.66916234109943513666935072490, 1.59470626777535399499705163279, 3.12299746637901274163340036571, 4.25117026984354501742247889295, 5.48305352764957676706657730415, 6.15825491937290577839344558506, 6.80306514462331740666517340857, 8.146123849897553523425871336962, 9.286284878658147234178431291818, 9.881902667865003765926069991450

Graph of the $Z$-function along the critical line