Properties

Label 2-448-1.1-c7-0-14
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $139.948$
Root an. cond. $11.8299$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18·3-s − 160·5-s + 343·7-s − 1.86e3·9-s + 5.70e3·11-s − 1.38e3·13-s + 2.88e3·15-s − 3.14e4·17-s − 1.99e4·19-s − 6.17e3·21-s + 7.71e4·23-s − 5.25e4·25-s + 7.29e4·27-s + 1.93e5·29-s + 2.63e4·31-s − 1.02e5·33-s − 5.48e4·35-s − 2.04e5·37-s + 2.49e4·39-s − 6.63e5·41-s − 3.35e5·43-s + 2.98e5·45-s − 1.11e6·47-s + 1.17e5·49-s + 5.65e5·51-s − 1.12e5·53-s − 9.12e5·55-s + ⋯
L(s)  = 1  − 0.384·3-s − 0.572·5-s + 0.377·7-s − 0.851·9-s + 1.29·11-s − 0.175·13-s + 0.220·15-s − 1.55·17-s − 0.667·19-s − 0.145·21-s + 1.32·23-s − 0.672·25-s + 0.712·27-s + 1.47·29-s + 0.158·31-s − 0.497·33-s − 0.216·35-s − 0.663·37-s + 0.0674·39-s − 1.50·41-s − 0.644·43-s + 0.487·45-s − 1.57·47-s + 1/7·49-s + 0.597·51-s − 0.104·53-s − 0.739·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(139.948\)
Root analytic conductor: \(11.8299\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.162681426\)
\(L(\frac12)\) \(\approx\) \(1.162681426\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - p^{3} T \)
good3 \( 1 + 2 p^{2} T + p^{7} T^{2} \)
5 \( 1 + 32 p T + p^{7} T^{2} \)
11 \( 1 - 5704 T + p^{7} T^{2} \)
13 \( 1 + 1388 T + p^{7} T^{2} \)
17 \( 1 + 31434 T + p^{7} T^{2} \)
19 \( 1 + 19966 T + p^{7} T^{2} \)
23 \( 1 - 77136 T + p^{7} T^{2} \)
29 \( 1 - 193374 T + p^{7} T^{2} \)
31 \( 1 - 26356 T + p^{7} T^{2} \)
37 \( 1 + 204346 T + p^{7} T^{2} \)
41 \( 1 + 663050 T + p^{7} T^{2} \)
43 \( 1 + 335920 T + p^{7} T^{2} \)
47 \( 1 + 1119812 T + p^{7} T^{2} \)
53 \( 1 + 112782 T + p^{7} T^{2} \)
59 \( 1 - 536154 T + p^{7} T^{2} \)
61 \( 1 - 1170264 T + p^{7} T^{2} \)
67 \( 1 - 3890660 T + p^{7} T^{2} \)
71 \( 1 + 2505344 T + p^{7} T^{2} \)
73 \( 1 + 1435070 T + p^{7} T^{2} \)
79 \( 1 + 176536 T + p^{7} T^{2} \)
83 \( 1 + 6211622 T + p^{7} T^{2} \)
89 \( 1 + 4729062 T + p^{7} T^{2} \)
97 \( 1 + 2129562 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.993890066649116205869225995083, −8.710684404926252805993124090992, −8.451576768950176007142856546120, −6.91643734069742743646818874571, −6.42700258147556906816129720331, −5.07797450898794160174557147706, −4.27974436744002549400129040208, −3.11924247954211185404143053736, −1.79462848292050852304936463167, −0.49002177640491648519700075563, 0.49002177640491648519700075563, 1.79462848292050852304936463167, 3.11924247954211185404143053736, 4.27974436744002549400129040208, 5.07797450898794160174557147706, 6.42700258147556906816129720331, 6.91643734069742743646818874571, 8.451576768950176007142856546120, 8.710684404926252805993124090992, 9.993890066649116205869225995083

Graph of the $Z$-function along the critical line