L(s) = 1 | + 30·3-s − 32·5-s − 49·7-s + 657·9-s − 624·11-s + 708·13-s − 960·15-s + 934·17-s + 1.85e3·19-s − 1.47e3·21-s + 1.12e3·23-s − 2.10e3·25-s + 1.24e4·27-s + 1.17e3·29-s − 2.90e3·31-s − 1.87e4·33-s + 1.56e3·35-s + 1.24e4·37-s + 2.12e4·39-s + 2.66e3·41-s − 7.14e3·43-s − 2.10e4·45-s + 7.46e3·47-s + 2.40e3·49-s + 2.80e4·51-s + 2.72e4·53-s + 1.99e4·55-s + ⋯ |
L(s) = 1 | + 1.92·3-s − 0.572·5-s − 0.377·7-s + 2.70·9-s − 1.55·11-s + 1.16·13-s − 1.10·15-s + 0.783·17-s + 1.18·19-s − 0.727·21-s + 0.441·23-s − 0.672·25-s + 3.27·27-s + 0.259·29-s − 0.543·31-s − 2.99·33-s + 0.216·35-s + 1.49·37-s + 2.23·39-s + 0.247·41-s − 0.589·43-s − 1.54·45-s + 0.493·47-s + 1/7·49-s + 1.50·51-s + 1.33·53-s + 0.890·55-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(448s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
4.187590150 |
L(21) |
≈ |
4.187590150 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+p2T |
good | 3 | 1−10pT+p5T2 |
| 5 | 1+32T+p5T2 |
| 11 | 1+624T+p5T2 |
| 13 | 1−708T+p5T2 |
| 17 | 1−934T+p5T2 |
| 19 | 1−1858T+p5T2 |
| 23 | 1−1120T+p5T2 |
| 29 | 1−1174T+p5T2 |
| 31 | 1+2908T+p5T2 |
| 37 | 1−12462T+p5T2 |
| 41 | 1−2662T+p5T2 |
| 43 | 1+7144T+p5T2 |
| 47 | 1−7468T+p5T2 |
| 53 | 1−27274T+p5T2 |
| 59 | 1−2490T+p5T2 |
| 61 | 1−11096T+p5T2 |
| 67 | 1−39756T+p5T2 |
| 71 | 1−69888T+p5T2 |
| 73 | 1−16450T+p5T2 |
| 79 | 1+78376T+p5T2 |
| 83 | 1−109818T+p5T2 |
| 89 | 1+56966T+p5T2 |
| 97 | 1+115946T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.996118724105065156668466334681, −9.345043319960076057262833342846, −8.230570626432969136775843943954, −7.900777959191941085034757036604, −7.03178155852422763538641808158, −5.43543856737362525337529338711, −4.00768697279557450238735317728, −3.27488949204659806931351649637, −2.45631589271709401571224111849, −1.00755590478842028016131675157,
1.00755590478842028016131675157, 2.45631589271709401571224111849, 3.27488949204659806931351649637, 4.00768697279557450238735317728, 5.43543856737362525337529338711, 7.03178155852422763538641808158, 7.900777959191941085034757036604, 8.230570626432969136775843943954, 9.345043319960076057262833342846, 9.996118724105065156668466334681