Properties

Label 2-448-1.1-c5-0-28
Degree $2$
Conductor $448$
Sign $1$
Analytic cond. $71.8519$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 30·3-s − 32·5-s − 49·7-s + 657·9-s − 624·11-s + 708·13-s − 960·15-s + 934·17-s + 1.85e3·19-s − 1.47e3·21-s + 1.12e3·23-s − 2.10e3·25-s + 1.24e4·27-s + 1.17e3·29-s − 2.90e3·31-s − 1.87e4·33-s + 1.56e3·35-s + 1.24e4·37-s + 2.12e4·39-s + 2.66e3·41-s − 7.14e3·43-s − 2.10e4·45-s + 7.46e3·47-s + 2.40e3·49-s + 2.80e4·51-s + 2.72e4·53-s + 1.99e4·55-s + ⋯
L(s)  = 1  + 1.92·3-s − 0.572·5-s − 0.377·7-s + 2.70·9-s − 1.55·11-s + 1.16·13-s − 1.10·15-s + 0.783·17-s + 1.18·19-s − 0.727·21-s + 0.441·23-s − 0.672·25-s + 3.27·27-s + 0.259·29-s − 0.543·31-s − 2.99·33-s + 0.216·35-s + 1.49·37-s + 2.23·39-s + 0.247·41-s − 0.589·43-s − 1.54·45-s + 0.493·47-s + 1/7·49-s + 1.50·51-s + 1.33·53-s + 0.890·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $1$
Analytic conductor: \(71.8519\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.187590150\)
\(L(\frac12)\) \(\approx\) \(4.187590150\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p^{2} T \)
good3 \( 1 - 10 p T + p^{5} T^{2} \)
5 \( 1 + 32 T + p^{5} T^{2} \)
11 \( 1 + 624 T + p^{5} T^{2} \)
13 \( 1 - 708 T + p^{5} T^{2} \)
17 \( 1 - 934 T + p^{5} T^{2} \)
19 \( 1 - 1858 T + p^{5} T^{2} \)
23 \( 1 - 1120 T + p^{5} T^{2} \)
29 \( 1 - 1174 T + p^{5} T^{2} \)
31 \( 1 + 2908 T + p^{5} T^{2} \)
37 \( 1 - 12462 T + p^{5} T^{2} \)
41 \( 1 - 2662 T + p^{5} T^{2} \)
43 \( 1 + 7144 T + p^{5} T^{2} \)
47 \( 1 - 7468 T + p^{5} T^{2} \)
53 \( 1 - 27274 T + p^{5} T^{2} \)
59 \( 1 - 2490 T + p^{5} T^{2} \)
61 \( 1 - 11096 T + p^{5} T^{2} \)
67 \( 1 - 39756 T + p^{5} T^{2} \)
71 \( 1 - 69888 T + p^{5} T^{2} \)
73 \( 1 - 16450 T + p^{5} T^{2} \)
79 \( 1 + 78376 T + p^{5} T^{2} \)
83 \( 1 - 109818 T + p^{5} T^{2} \)
89 \( 1 + 56966 T + p^{5} T^{2} \)
97 \( 1 + 115946 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.996118724105065156668466334681, −9.345043319960076057262833342846, −8.230570626432969136775843943954, −7.900777959191941085034757036604, −7.03178155852422763538641808158, −5.43543856737362525337529338711, −4.00768697279557450238735317728, −3.27488949204659806931351649637, −2.45631589271709401571224111849, −1.00755590478842028016131675157, 1.00755590478842028016131675157, 2.45631589271709401571224111849, 3.27488949204659806931351649637, 4.00768697279557450238735317728, 5.43543856737362525337529338711, 7.03178155852422763538641808158, 7.900777959191941085034757036604, 8.230570626432969136775843943954, 9.345043319960076057262833342846, 9.996118724105065156668466334681

Graph of the $Z$-function along the critical line