L(s) = 1 | − 2·3-s + 96·5-s − 49·7-s − 239·9-s − 720·11-s − 572·13-s − 192·15-s + 1.25e3·17-s − 94·19-s + 98·21-s − 96·23-s + 6.09e3·25-s + 964·27-s + 4.37e3·29-s + 6.24e3·31-s + 1.44e3·33-s − 4.70e3·35-s + 1.07e4·37-s + 1.14e3·39-s + 1.20e4·41-s − 9.16e3·43-s − 2.29e4·45-s + 2.58e4·47-s + 2.40e3·49-s − 2.50e3·51-s − 1.01e3·53-s − 6.91e4·55-s + ⋯ |
L(s) = 1 | − 0.128·3-s + 1.71·5-s − 0.377·7-s − 0.983·9-s − 1.79·11-s − 0.938·13-s − 0.220·15-s + 1.05·17-s − 0.0597·19-s + 0.0484·21-s − 0.0378·23-s + 1.94·25-s + 0.254·27-s + 0.965·29-s + 1.16·31-s + 0.230·33-s − 0.649·35-s + 1.29·37-s + 0.120·39-s + 1.11·41-s − 0.755·43-s − 1.68·45-s + 1.70·47-s + 1/7·49-s − 0.135·51-s − 0.0495·53-s − 3.08·55-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(448s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
2.118776542 |
L(21) |
≈ |
2.118776542 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+p2T |
good | 3 | 1+2T+p5T2 |
| 5 | 1−96T+p5T2 |
| 11 | 1+720T+p5T2 |
| 13 | 1+44pT+p5T2 |
| 17 | 1−1254T+p5T2 |
| 19 | 1+94T+p5T2 |
| 23 | 1+96T+p5T2 |
| 29 | 1−4374T+p5T2 |
| 31 | 1−6244T+p5T2 |
| 37 | 1−10798T+p5T2 |
| 41 | 1−12006T+p5T2 |
| 43 | 1+9160T+p5T2 |
| 47 | 1−25836T+p5T2 |
| 53 | 1+1014T+p5T2 |
| 59 | 1−1242T+p5T2 |
| 61 | 1+7592T+p5T2 |
| 67 | 1−41132T+p5T2 |
| 71 | 1−37632T+p5T2 |
| 73 | 1+13438T+p5T2 |
| 79 | 1+6248T+p5T2 |
| 83 | 1+25254T+p5T2 |
| 89 | 1+45126T+p5T2 |
| 97 | 1−107222T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.08278606912181803038844356056, −9.722863581771719520871478508012, −8.535719485284051150169392476463, −7.56997175019110947800037908400, −6.26310282912933770517725114252, −5.60012416596259633608302326142, −4.91504362725559381700277952829, −2.79684580863203649306946847621, −2.45057591932716256621523526145, −0.73170272917744731999750165833,
0.73170272917744731999750165833, 2.45057591932716256621523526145, 2.79684580863203649306946847621, 4.91504362725559381700277952829, 5.60012416596259633608302326142, 6.26310282912933770517725114252, 7.56997175019110947800037908400, 8.535719485284051150169392476463, 9.722863581771719520871478508012, 10.08278606912181803038844356056