L(s) = 1 | − 2·3-s + 96·5-s − 49·7-s − 239·9-s − 720·11-s − 572·13-s − 192·15-s + 1.25e3·17-s − 94·19-s + 98·21-s − 96·23-s + 6.09e3·25-s + 964·27-s + 4.37e3·29-s + 6.24e3·31-s + 1.44e3·33-s − 4.70e3·35-s + 1.07e4·37-s + 1.14e3·39-s + 1.20e4·41-s − 9.16e3·43-s − 2.29e4·45-s + 2.58e4·47-s + 2.40e3·49-s − 2.50e3·51-s − 1.01e3·53-s − 6.91e4·55-s + ⋯ |
L(s) = 1 | − 0.128·3-s + 1.71·5-s − 0.377·7-s − 0.983·9-s − 1.79·11-s − 0.938·13-s − 0.220·15-s + 1.05·17-s − 0.0597·19-s + 0.0484·21-s − 0.0378·23-s + 1.94·25-s + 0.254·27-s + 0.965·29-s + 1.16·31-s + 0.230·33-s − 0.649·35-s + 1.29·37-s + 0.120·39-s + 1.11·41-s − 0.755·43-s − 1.68·45-s + 1.70·47-s + 1/7·49-s − 0.135·51-s − 0.0495·53-s − 3.08·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.118776542\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.118776542\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + p^{2} T \) |
good | 3 | \( 1 + 2 T + p^{5} T^{2} \) |
| 5 | \( 1 - 96 T + p^{5} T^{2} \) |
| 11 | \( 1 + 720 T + p^{5} T^{2} \) |
| 13 | \( 1 + 44 p T + p^{5} T^{2} \) |
| 17 | \( 1 - 1254 T + p^{5} T^{2} \) |
| 19 | \( 1 + 94 T + p^{5} T^{2} \) |
| 23 | \( 1 + 96 T + p^{5} T^{2} \) |
| 29 | \( 1 - 4374 T + p^{5} T^{2} \) |
| 31 | \( 1 - 6244 T + p^{5} T^{2} \) |
| 37 | \( 1 - 10798 T + p^{5} T^{2} \) |
| 41 | \( 1 - 12006 T + p^{5} T^{2} \) |
| 43 | \( 1 + 9160 T + p^{5} T^{2} \) |
| 47 | \( 1 - 25836 T + p^{5} T^{2} \) |
| 53 | \( 1 + 1014 T + p^{5} T^{2} \) |
| 59 | \( 1 - 1242 T + p^{5} T^{2} \) |
| 61 | \( 1 + 7592 T + p^{5} T^{2} \) |
| 67 | \( 1 - 41132 T + p^{5} T^{2} \) |
| 71 | \( 1 - 37632 T + p^{5} T^{2} \) |
| 73 | \( 1 + 13438 T + p^{5} T^{2} \) |
| 79 | \( 1 + 6248 T + p^{5} T^{2} \) |
| 83 | \( 1 + 25254 T + p^{5} T^{2} \) |
| 89 | \( 1 + 45126 T + p^{5} T^{2} \) |
| 97 | \( 1 - 107222 T + p^{5} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08278606912181803038844356056, −9.722863581771719520871478508012, −8.535719485284051150169392476463, −7.56997175019110947800037908400, −6.26310282912933770517725114252, −5.60012416596259633608302326142, −4.91504362725559381700277952829, −2.79684580863203649306946847621, −2.45057591932716256621523526145, −0.73170272917744731999750165833,
0.73170272917744731999750165833, 2.45057591932716256621523526145, 2.79684580863203649306946847621, 4.91504362725559381700277952829, 5.60012416596259633608302326142, 6.26310282912933770517725114252, 7.56997175019110947800037908400, 8.535719485284051150169392476463, 9.722863581771719520871478508012, 10.08278606912181803038844356056