Properties

Label 2-448-1.1-c3-0-28
Degree $2$
Conductor $448$
Sign $-1$
Analytic cond. $26.4328$
Root an. cond. $5.14128$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 6·5-s − 7·7-s − 11·9-s − 12·11-s + 82·13-s − 24·15-s − 30·17-s + 68·19-s − 28·21-s − 216·23-s − 89·25-s − 152·27-s − 246·29-s + 112·31-s − 48·33-s + 42·35-s − 110·37-s + 328·39-s − 246·41-s − 172·43-s + 66·45-s − 192·47-s + 49·49-s − 120·51-s − 558·53-s + 72·55-s + ⋯
L(s)  = 1  + 0.769·3-s − 0.536·5-s − 0.377·7-s − 0.407·9-s − 0.328·11-s + 1.74·13-s − 0.413·15-s − 0.428·17-s + 0.821·19-s − 0.290·21-s − 1.95·23-s − 0.711·25-s − 1.08·27-s − 1.57·29-s + 0.648·31-s − 0.253·33-s + 0.202·35-s − 0.488·37-s + 1.34·39-s − 0.937·41-s − 0.609·43-s + 0.218·45-s − 0.595·47-s + 1/7·49-s − 0.329·51-s − 1.44·53-s + 0.176·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $-1$
Analytic conductor: \(26.4328\)
Root analytic conductor: \(5.14128\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 448,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p T \)
good3 \( 1 - 4 T + p^{3} T^{2} \)
5 \( 1 + 6 T + p^{3} T^{2} \)
11 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 - 82 T + p^{3} T^{2} \)
17 \( 1 + 30 T + p^{3} T^{2} \)
19 \( 1 - 68 T + p^{3} T^{2} \)
23 \( 1 + 216 T + p^{3} T^{2} \)
29 \( 1 + 246 T + p^{3} T^{2} \)
31 \( 1 - 112 T + p^{3} T^{2} \)
37 \( 1 + 110 T + p^{3} T^{2} \)
41 \( 1 + 6 p T + p^{3} T^{2} \)
43 \( 1 + 4 p T + p^{3} T^{2} \)
47 \( 1 + 192 T + p^{3} T^{2} \)
53 \( 1 + 558 T + p^{3} T^{2} \)
59 \( 1 - 540 T + p^{3} T^{2} \)
61 \( 1 + 110 T + p^{3} T^{2} \)
67 \( 1 - 140 T + p^{3} T^{2} \)
71 \( 1 - 840 T + p^{3} T^{2} \)
73 \( 1 + 550 T + p^{3} T^{2} \)
79 \( 1 - 208 T + p^{3} T^{2} \)
83 \( 1 - 516 T + p^{3} T^{2} \)
89 \( 1 + 1398 T + p^{3} T^{2} \)
97 \( 1 - 1586 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.12528604205771189110666401735, −9.215823791984288944729899750293, −8.284646168257653410387205714789, −7.82442186692745137546595442365, −6.45479564422681832295287720107, −5.55314249092004707563323961682, −3.91205579060244468303258770839, −3.33920704810777841973751625046, −1.88179001471311342318053272741, 0, 1.88179001471311342318053272741, 3.33920704810777841973751625046, 3.91205579060244468303258770839, 5.55314249092004707563323961682, 6.45479564422681832295287720107, 7.82442186692745137546595442365, 8.284646168257653410387205714789, 9.215823791984288944729899750293, 10.12528604205771189110666401735

Graph of the $Z$-function along the critical line