Properties

Label 2-446-1.1-c1-0-9
Degree $2$
Conductor $446$
Sign $1$
Analytic cond. $3.56132$
Root an. cond. $1.88714$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.07·3-s + 4-s + 0.701·5-s − 2.07·6-s + 3.38·7-s − 8-s + 1.29·9-s − 0.701·10-s + 3.84·11-s + 2.07·12-s − 4.26·13-s − 3.38·14-s + 1.45·15-s + 16-s − 6.75·17-s − 1.29·18-s + 7.87·19-s + 0.701·20-s + 7.02·21-s − 3.84·22-s + 1.63·23-s − 2.07·24-s − 4.50·25-s + 4.26·26-s − 3.52·27-s + 3.38·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.19·3-s + 0.5·4-s + 0.313·5-s − 0.846·6-s + 1.28·7-s − 0.353·8-s + 0.433·9-s − 0.221·10-s + 1.15·11-s + 0.598·12-s − 1.18·13-s − 0.905·14-s + 0.375·15-s + 0.250·16-s − 1.63·17-s − 0.306·18-s + 1.80·19-s + 0.156·20-s + 1.53·21-s − 0.819·22-s + 0.341·23-s − 0.423·24-s − 0.901·25-s + 0.836·26-s − 0.678·27-s + 0.640·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 446 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(446\)    =    \(2 \cdot 223\)
Sign: $1$
Analytic conductor: \(3.56132\)
Root analytic conductor: \(1.88714\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 446,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.725986085\)
\(L(\frac12)\) \(\approx\) \(1.725986085\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
223 \( 1 - T \)
good3 \( 1 - 2.07T + 3T^{2} \)
5 \( 1 - 0.701T + 5T^{2} \)
7 \( 1 - 3.38T + 7T^{2} \)
11 \( 1 - 3.84T + 11T^{2} \)
13 \( 1 + 4.26T + 13T^{2} \)
17 \( 1 + 6.75T + 17T^{2} \)
19 \( 1 - 7.87T + 19T^{2} \)
23 \( 1 - 1.63T + 23T^{2} \)
29 \( 1 + 2.14T + 29T^{2} \)
31 \( 1 + 2.31T + 31T^{2} \)
37 \( 1 - 5.66T + 37T^{2} \)
41 \( 1 - 1.47T + 41T^{2} \)
43 \( 1 - 6.07T + 43T^{2} \)
47 \( 1 + 10.2T + 47T^{2} \)
53 \( 1 + 7.27T + 53T^{2} \)
59 \( 1 - 8.21T + 59T^{2} \)
61 \( 1 - 7.24T + 61T^{2} \)
67 \( 1 - 9.74T + 67T^{2} \)
71 \( 1 - 13.1T + 71T^{2} \)
73 \( 1 + 1.79T + 73T^{2} \)
79 \( 1 + 9.88T + 79T^{2} \)
83 \( 1 + 15.7T + 83T^{2} \)
89 \( 1 + 12.7T + 89T^{2} \)
97 \( 1 - 0.294T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.33999500894787073162563667583, −9.649892006916561622767165444629, −9.403857250297482090444638167529, −8.422312540218272778314212289433, −7.69699216364205051435935008561, −6.86306993331133802901660710884, −5.35219578825523089197536394566, −4.08418613294721157162008534273, −2.61440936880690905375854100277, −1.64498287147741973280141769488, 1.64498287147741973280141769488, 2.61440936880690905375854100277, 4.08418613294721157162008534273, 5.35219578825523089197536394566, 6.86306993331133802901660710884, 7.69699216364205051435935008561, 8.422312540218272778314212289433, 9.403857250297482090444638167529, 9.649892006916561622767165444629, 11.33999500894787073162563667583

Graph of the $Z$-function along the critical line