L(s) = 1 | + (−0.5 − 0.866i)3-s + 7-s + (−0.499 + 0.866i)9-s − 1.73i·11-s + (−0.5 − 0.866i)21-s − 25-s + 0.999·27-s + (−1.49 + 0.866i)33-s + 37-s + 1.73i·41-s + 1.73i·47-s + 1.73i·53-s + (−0.499 + 0.866i)63-s − 2·67-s − 1.73i·71-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + 7-s + (−0.499 + 0.866i)9-s − 1.73i·11-s + (−0.5 − 0.866i)21-s − 25-s + 0.999·27-s + (−1.49 + 0.866i)33-s + 37-s + 1.73i·41-s + 1.73i·47-s + 1.73i·53-s + (−0.499 + 0.866i)63-s − 2·67-s − 1.73i·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7824815740\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7824815740\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 - T \) |
good | 5 | \( 1 + T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + 1.73iT - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 41 | \( 1 - 1.73iT - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - 1.73iT - T^{2} \) |
| 53 | \( 1 - 1.73iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 2T + T^{2} \) |
| 71 | \( 1 + 1.73iT - T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 1.73iT - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26303786876580160644958091232, −10.70417466376122999834984814659, −9.232353427821066858697442828666, −8.108327758868449584816010934364, −7.76245458016475291345774216912, −6.31590810636331028396689979234, −5.71593979959883848179323217908, −4.53613856377482178644515444175, −2.88788319861533065586617106199, −1.32356133963563538771524665473,
2.04959209147957484008262775619, 3.89359063532285634935367099334, 4.73319749530810311706120149747, 5.53460952973646042990621797065, 6.84346789363530881075378952314, 7.82908736270929421247710671950, 8.940330081524941427471309593592, 9.870505506186569477634988566105, 10.46869270846740983182702188531, 11.54844875575073403571597113739