L(s) = 1 | − 2-s + 4-s + 5-s − 8-s − 10-s − 2·11-s − 2·13-s + 16-s − 4·17-s + 20-s + 2·22-s − 8·23-s + 25-s + 2·26-s + 2·31-s − 32-s + 4·34-s + 8·37-s − 40-s − 2·41-s − 2·43-s − 2·44-s + 8·46-s + 10·47-s − 50-s − 2·52-s + 2·53-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s − 0.316·10-s − 0.603·11-s − 0.554·13-s + 1/4·16-s − 0.970·17-s + 0.223·20-s + 0.426·22-s − 1.66·23-s + 1/5·25-s + 0.392·26-s + 0.359·31-s − 0.176·32-s + 0.685·34-s + 1.31·37-s − 0.158·40-s − 0.312·41-s − 0.304·43-s − 0.301·44-s + 1.17·46-s + 1.45·47-s − 0.141·50-s − 0.277·52-s + 0.274·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4410 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4410 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.113377189\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.113377189\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + 2 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + 2 T + p T^{2} \) |
| 47 | \( 1 - 10 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 - 2 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 - 16 T + p T^{2} \) |
| 83 | \( 1 - 16 T + p T^{2} \) |
| 89 | \( 1 - 14 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.275900421424892036269046670695, −7.81801013988451065415789760990, −6.95159938169996227063425188035, −6.27985274792127521772984106731, −5.55492505029655878101511907953, −4.67596156571065197352692680739, −3.74754759678486478818103175819, −2.48441411623192167811216141892, −2.08868828855827221586844925041, −0.63211088604567526362737749078,
0.63211088604567526362737749078, 2.08868828855827221586844925041, 2.48441411623192167811216141892, 3.74754759678486478818103175819, 4.67596156571065197352692680739, 5.55492505029655878101511907953, 6.27985274792127521772984106731, 6.95159938169996227063425188035, 7.81801013988451065415789760990, 8.275900421424892036269046670695