L(s) = 1 | − 2-s + 4-s + 5-s − 8-s − 10-s − 2·11-s − 2·13-s + 16-s − 4·17-s + 20-s + 2·22-s − 8·23-s + 25-s + 2·26-s + 2·31-s − 32-s + 4·34-s + 8·37-s − 40-s − 2·41-s − 2·43-s − 2·44-s + 8·46-s + 10·47-s − 50-s − 2·52-s + 2·53-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s − 0.316·10-s − 0.603·11-s − 0.554·13-s + 1/4·16-s − 0.970·17-s + 0.223·20-s + 0.426·22-s − 1.66·23-s + 1/5·25-s + 0.392·26-s + 0.359·31-s − 0.176·32-s + 0.685·34-s + 1.31·37-s − 0.158·40-s − 0.312·41-s − 0.304·43-s − 0.301·44-s + 1.17·46-s + 1.45·47-s − 0.141·50-s − 0.277·52-s + 0.274·53-s + ⋯ |
Λ(s)=(=(4410s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4410s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.113377189 |
L(21) |
≈ |
1.113377189 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1−T |
| 7 | 1 |
good | 11 | 1+2T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1−10T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−2T+pT2 |
| 71 | 1−12T+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1−16T+pT2 |
| 83 | 1−16T+pT2 |
| 89 | 1−14T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.275900421424892036269046670695, −7.81801013988451065415789760990, −6.95159938169996227063425188035, −6.27985274792127521772984106731, −5.55492505029655878101511907953, −4.67596156571065197352692680739, −3.74754759678486478818103175819, −2.48441411623192167811216141892, −2.08868828855827221586844925041, −0.63211088604567526362737749078,
0.63211088604567526362737749078, 2.08868828855827221586844925041, 2.48441411623192167811216141892, 3.74754759678486478818103175819, 4.67596156571065197352692680739, 5.55492505029655878101511907953, 6.27985274792127521772984106731, 6.95159938169996227063425188035, 7.81801013988451065415789760990, 8.275900421424892036269046670695