Properties

Label 2-4400-1.1-c1-0-66
Degree $2$
Conductor $4400$
Sign $-1$
Analytic cond. $35.1341$
Root an. cond. $5.92740$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 3·9-s − 11-s + 4·13-s + 4·17-s − 6·29-s + 2·37-s + 6·41-s + 2·43-s − 3·49-s + 10·53-s − 12·59-s − 6·61-s + 6·63-s − 12·67-s − 16·71-s − 4·73-s + 2·77-s + 4·79-s + 9·81-s + 2·83-s + 6·89-s − 8·91-s + 2·97-s + 3·99-s + 6·101-s + 4·103-s + ⋯
L(s)  = 1  − 0.755·7-s − 9-s − 0.301·11-s + 1.10·13-s + 0.970·17-s − 1.11·29-s + 0.328·37-s + 0.937·41-s + 0.304·43-s − 3/7·49-s + 1.37·53-s − 1.56·59-s − 0.768·61-s + 0.755·63-s − 1.46·67-s − 1.89·71-s − 0.468·73-s + 0.227·77-s + 0.450·79-s + 81-s + 0.219·83-s + 0.635·89-s − 0.838·91-s + 0.203·97-s + 0.301·99-s + 0.597·101-s + 0.394·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4400\)    =    \(2^{4} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(35.1341\)
Root analytic conductor: \(5.92740\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.898936570941772463430241678285, −7.44620724213555121019017614969, −6.23862547700277970583253282336, −5.97420845383247042083925636614, −5.19222357781999791105637954091, −4.04649274617805365151136230133, −3.30588833879895129178850964400, −2.64602945319110350841739354126, −1.31982113773072061232939185969, 0, 1.31982113773072061232939185969, 2.64602945319110350841739354126, 3.30588833879895129178850964400, 4.04649274617805365151136230133, 5.19222357781999791105637954091, 5.97420845383247042083925636614, 6.23862547700277970583253282336, 7.44620724213555121019017614969, 7.898936570941772463430241678285

Graph of the $Z$-function along the critical line