L(s) = 1 | − 2·7-s − 3·9-s − 11-s + 4·13-s + 4·17-s − 6·29-s + 2·37-s + 6·41-s + 2·43-s − 3·49-s + 10·53-s − 12·59-s − 6·61-s + 6·63-s − 12·67-s − 16·71-s − 4·73-s + 2·77-s + 4·79-s + 9·81-s + 2·83-s + 6·89-s − 8·91-s + 2·97-s + 3·99-s + 6·101-s + 4·103-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 9-s − 0.301·11-s + 1.10·13-s + 0.970·17-s − 1.11·29-s + 0.328·37-s + 0.937·41-s + 0.304·43-s − 3/7·49-s + 1.37·53-s − 1.56·59-s − 0.768·61-s + 0.755·63-s − 1.46·67-s − 1.89·71-s − 0.468·73-s + 0.227·77-s + 0.450·79-s + 81-s + 0.219·83-s + 0.635·89-s − 0.838·91-s + 0.203·97-s + 0.301·99-s + 0.597·101-s + 0.394·103-s + ⋯ |
Λ(s)=(=(4400s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4400s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1+T |
good | 3 | 1+pT2 |
| 7 | 1+2T+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−10T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1+16T+pT2 |
| 73 | 1+4T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−2T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.898936570941772463430241678285, −7.44620724213555121019017614969, −6.23862547700277970583253282336, −5.97420845383247042083925636614, −5.19222357781999791105637954091, −4.04649274617805365151136230133, −3.30588833879895129178850964400, −2.64602945319110350841739354126, −1.31982113773072061232939185969, 0,
1.31982113773072061232939185969, 2.64602945319110350841739354126, 3.30588833879895129178850964400, 4.04649274617805365151136230133, 5.19222357781999791105637954091, 5.97420845383247042083925636614, 6.23862547700277970583253282336, 7.44620724213555121019017614969, 7.898936570941772463430241678285