L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (0.190 + 0.587i)7-s + (0.309 − 0.951i)8-s + (−0.809 − 0.587i)9-s + 10-s + (0.309 + 0.951i)11-s + (1.30 + 0.951i)13-s + (0.190 − 0.587i)14-s + (−0.809 + 0.587i)16-s + (0.309 + 0.951i)18-s + (−0.5 + 1.53i)19-s + (−0.809 − 0.587i)20-s + (0.309 − 0.951i)22-s + 0.618·23-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.809 + 0.587i)5-s + (0.190 + 0.587i)7-s + (0.309 − 0.951i)8-s + (−0.809 − 0.587i)9-s + 10-s + (0.309 + 0.951i)11-s + (1.30 + 0.951i)13-s + (0.190 − 0.587i)14-s + (−0.809 + 0.587i)16-s + (0.309 + 0.951i)18-s + (−0.5 + 1.53i)19-s + (−0.809 − 0.587i)20-s + (0.309 − 0.951i)22-s + 0.618·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.794 - 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.794 - 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5060996033\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5060996033\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 5 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 + (-0.309 - 0.951i)T \) |
good | 3 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - 0.618T + T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.5 + 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.5 + 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - 0.618T + T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30253532847578394115441856340, −10.76516345709444848377205198304, −9.535743269777322079230704123905, −8.774568398587416298084908474003, −8.048381792993070636340859293257, −6.95696077081742688410481928523, −6.08895901824075764272385281885, −4.16650527135973297854551414472, −3.35739528430371123996751629381, −1.90926833830897970862286288612,
0.942359534289069936298232069661, 3.14725705661514812305844321937, 4.68677146207509353573017999424, 5.66630941715995649230358771886, 6.74761370673886706917019624374, 7.86416696857003306102926389911, 8.510290383492235168048121009058, 8.984916311161013413862630834388, 10.55172311454319624934468491494, 11.05480744611426148692345872033