Properties

Label 2-440-1.1-c3-0-29
Degree $2$
Conductor $440$
Sign $-1$
Analytic cond. $25.9608$
Root an. cond. $5.09517$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s + 5·5-s − 32·7-s + 9·9-s + 11·11-s − 48·13-s + 30·15-s − 36·17-s − 44·19-s − 192·21-s + 58·23-s + 25·25-s − 108·27-s − 278·29-s − 112·31-s + 66·33-s − 160·35-s + 194·37-s − 288·39-s − 314·41-s + 396·43-s + 45·45-s − 410·47-s + 681·49-s − 216·51-s + 170·53-s + 55·55-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s − 1.72·7-s + 1/3·9-s + 0.301·11-s − 1.02·13-s + 0.516·15-s − 0.513·17-s − 0.531·19-s − 1.99·21-s + 0.525·23-s + 1/5·25-s − 0.769·27-s − 1.78·29-s − 0.648·31-s + 0.348·33-s − 0.772·35-s + 0.861·37-s − 1.18·39-s − 1.19·41-s + 1.40·43-s + 0.149·45-s − 1.27·47-s + 1.98·49-s − 0.593·51-s + 0.440·53-s + 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(440\)    =    \(2^{3} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(25.9608\)
Root analytic conductor: \(5.09517\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 440,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p T \)
11 \( 1 - p T \)
good3 \( 1 - 2 p T + p^{3} T^{2} \)
7 \( 1 + 32 T + p^{3} T^{2} \)
13 \( 1 + 48 T + p^{3} T^{2} \)
17 \( 1 + 36 T + p^{3} T^{2} \)
19 \( 1 + 44 T + p^{3} T^{2} \)
23 \( 1 - 58 T + p^{3} T^{2} \)
29 \( 1 + 278 T + p^{3} T^{2} \)
31 \( 1 + 112 T + p^{3} T^{2} \)
37 \( 1 - 194 T + p^{3} T^{2} \)
41 \( 1 + 314 T + p^{3} T^{2} \)
43 \( 1 - 396 T + p^{3} T^{2} \)
47 \( 1 + 410 T + p^{3} T^{2} \)
53 \( 1 - 170 T + p^{3} T^{2} \)
59 \( 1 - 404 T + p^{3} T^{2} \)
61 \( 1 - 250 T + p^{3} T^{2} \)
67 \( 1 + 26 T + p^{3} T^{2} \)
71 \( 1 + 468 T + p^{3} T^{2} \)
73 \( 1 + 164 T + p^{3} T^{2} \)
79 \( 1 + 664 T + p^{3} T^{2} \)
83 \( 1 - 1348 T + p^{3} T^{2} \)
89 \( 1 - 6 p T + p^{3} T^{2} \)
97 \( 1 + 1498 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.799909917038339151004597296163, −9.437647828491945592144894283988, −8.696312959684535300605504999081, −7.43279903384645473749509557646, −6.64635304680106807972732046984, −5.57966130633579740618944521610, −3.99040019340408901897945108580, −3.03580417124465095759367105933, −2.15408062391606461499982734850, 0, 2.15408062391606461499982734850, 3.03580417124465095759367105933, 3.99040019340408901897945108580, 5.57966130633579740618944521610, 6.64635304680106807972732046984, 7.43279903384645473749509557646, 8.696312959684535300605504999081, 9.437647828491945592144894283988, 9.799909917038339151004597296163

Graph of the $Z$-function along the critical line