L(s) = 1 | − 5-s − 2·7-s − 3·9-s + 11-s − 4·13-s − 4·17-s + 25-s − 6·29-s + 2·35-s − 2·37-s + 6·41-s + 2·43-s + 3·45-s − 3·49-s − 10·53-s − 55-s + 12·59-s − 6·61-s + 6·63-s + 4·65-s − 12·67-s + 16·71-s + 4·73-s − 2·77-s − 4·79-s + 9·81-s + 2·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.755·7-s − 9-s + 0.301·11-s − 1.10·13-s − 0.970·17-s + 1/5·25-s − 1.11·29-s + 0.338·35-s − 0.328·37-s + 0.937·41-s + 0.304·43-s + 0.447·45-s − 3/7·49-s − 1.37·53-s − 0.134·55-s + 1.56·59-s − 0.768·61-s + 0.755·63-s + 0.496·65-s − 1.46·67-s + 1.89·71-s + 0.468·73-s − 0.227·77-s − 0.450·79-s + 81-s + 0.219·83-s + ⋯ |
Λ(s)=(=(440s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(440s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 11 | 1−T |
good | 3 | 1+pT2 |
| 7 | 1+2T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1−16T+pT2 |
| 73 | 1−4T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1−2T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81445160960969925806257181434, −9.620258313556316476955944146421, −8.987128940086315118720924933355, −7.906393321228809348111883565536, −6.94257154461568951821487101757, −5.99500771172096974750229105298, −4.82772136865313429170223708877, −3.58711967186630926697460909520, −2.44118808260323168492313335198, 0,
2.44118808260323168492313335198, 3.58711967186630926697460909520, 4.82772136865313429170223708877, 5.99500771172096974750229105298, 6.94257154461568951821487101757, 7.906393321228809348111883565536, 8.987128940086315118720924933355, 9.620258313556316476955944146421, 10.81445160960969925806257181434