Properties

Label 2-43560-1.1-c1-0-31
Degree $2$
Conductor $43560$
Sign $1$
Analytic cond. $347.828$
Root an. cond. $18.6501$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s + 6·13-s + 3·17-s + 4·19-s + 23-s + 25-s − 8·29-s + 5·31-s − 4·35-s − 4·37-s − 2·41-s − 5·47-s + 9·49-s − 13·53-s + 8·59-s − 11·61-s − 6·65-s + 10·67-s − 6·71-s + 4·73-s + 5·79-s + 4·83-s − 3·85-s − 12·89-s + 24·91-s − 4·95-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s + 1.66·13-s + 0.727·17-s + 0.917·19-s + 0.208·23-s + 1/5·25-s − 1.48·29-s + 0.898·31-s − 0.676·35-s − 0.657·37-s − 0.312·41-s − 0.729·47-s + 9/7·49-s − 1.78·53-s + 1.04·59-s − 1.40·61-s − 0.744·65-s + 1.22·67-s − 0.712·71-s + 0.468·73-s + 0.562·79-s + 0.439·83-s − 0.325·85-s − 1.27·89-s + 2.51·91-s − 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43560\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(347.828\)
Root analytic conductor: \(18.6501\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 43560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.388676304\)
\(L(\frac12)\) \(\approx\) \(3.388676304\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 5 T + p T^{2} \)
53 \( 1 + 13 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 11 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61239537952978, −14.15708208772392, −13.79273264815407, −13.18942660071874, −12.59720976467712, −11.94212391662280, −11.42789927808009, −11.19739250527568, −10.70689151401868, −10.00866213486594, −9.365093861805828, −8.713609345749764, −8.278857816802699, −7.811454814605926, −7.402772590138352, −6.604561058684720, −5.955062214422765, −5.337415646483482, −4.882472183719536, −4.184263290762184, −3.518761368565563, −3.088971045653812, −1.881243646928165, −1.446313140224272, −0.7158511945983851, 0.7158511945983851, 1.446313140224272, 1.881243646928165, 3.088971045653812, 3.518761368565563, 4.184263290762184, 4.882472183719536, 5.337415646483482, 5.955062214422765, 6.604561058684720, 7.402772590138352, 7.811454814605926, 8.278857816802699, 8.713609345749764, 9.365093861805828, 10.00866213486594, 10.70689151401868, 11.19739250527568, 11.42789927808009, 11.94212391662280, 12.59720976467712, 13.18942660071874, 13.79273264815407, 14.15708208772392, 14.61239537952978

Graph of the $Z$-function along the critical line