L(s) = 1 | + 2·2-s − 3-s + 2·4-s + (2 − i)5-s − 2·6-s − 4i·7-s + 9-s + (4 − 2i)10-s + i·11-s − 2·12-s − 2i·13-s − 8i·14-s + (−2 + i)15-s − 4·16-s + 6·17-s + 2·18-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 4-s + (0.894 − 0.447i)5-s − 0.816·6-s − 1.51i·7-s + 0.333·9-s + (1.26 − 0.632i)10-s + 0.301i·11-s − 0.577·12-s − 0.554i·13-s − 2.13i·14-s + (−0.516 + 0.258i)15-s − 16-s + 1.45·17-s + 0.471·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.747 + 0.664i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.747 + 0.664i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.45992 - 0.935260i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.45992 - 0.935260i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 5 | \( 1 + (-2 + i)T \) |
| 29 | \( 1 + (2 + 5i)T \) |
good | 2 | \( 1 - 2T + 2T^{2} \) |
| 7 | \( 1 + 4iT - 7T^{2} \) |
| 11 | \( 1 - iT - 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 - 6T + 17T^{2} \) |
| 19 | \( 1 - 4iT - 19T^{2} \) |
| 23 | \( 1 - 9iT - 23T^{2} \) |
| 31 | \( 1 - 2iT - 31T^{2} \) |
| 37 | \( 1 - T + 37T^{2} \) |
| 41 | \( 1 - 9iT - 41T^{2} \) |
| 43 | \( 1 - T + 43T^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 + 9iT - 53T^{2} \) |
| 59 | \( 1 - 8T + 59T^{2} \) |
| 61 | \( 1 - 6iT - 61T^{2} \) |
| 67 | \( 1 - 12iT - 67T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + 15T + 73T^{2} \) |
| 79 | \( 1 + 4iT - 79T^{2} \) |
| 83 | \( 1 - 7iT - 83T^{2} \) |
| 89 | \( 1 + 2iT - 89T^{2} \) |
| 97 | \( 1 + 11T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.31964077809128755766758793830, −10.07614116417574186181496133968, −9.777626087947438429350619065172, −7.969692709288310492536008623657, −7.00172992126185058755452452244, −5.87383952946041732115373603645, −5.34026607346045504613598208763, −4.27497789850775790366433240614, −3.33671717360574232261915277963, −1.36945748312626220732479902083,
2.22851511724058885799394735378, 3.18473962013872326817762539604, 4.74896060628684584323173366671, 5.54892767092728099639388658978, 6.10830894406878056202091453064, 6.95425659078922914311067993793, 8.696753834975057074824724346127, 9.476660412762067745707152239415, 10.66518176202523632624171352051, 11.53404899071342143673972193440