L(s) = 1 | + 2·2-s − 3-s + 2·4-s + (2 − i)5-s − 2·6-s − 4i·7-s + 9-s + (4 − 2i)10-s + i·11-s − 2·12-s − 2i·13-s − 8i·14-s + (−2 + i)15-s − 4·16-s + 6·17-s + 2·18-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 4-s + (0.894 − 0.447i)5-s − 0.816·6-s − 1.51i·7-s + 0.333·9-s + (1.26 − 0.632i)10-s + 0.301i·11-s − 0.577·12-s − 0.554i·13-s − 2.13i·14-s + (−0.516 + 0.258i)15-s − 16-s + 1.45·17-s + 0.471·18-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)(0.747+0.664i)Λ(2−s)
Λ(s)=(=(435s/2ΓC(s+1/2)L(s)(0.747+0.664i)Λ(1−s)
Degree: |
2 |
Conductor: |
435
= 3⋅5⋅29
|
Sign: |
0.747+0.664i
|
Analytic conductor: |
3.47349 |
Root analytic conductor: |
1.86373 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ435(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 435, ( :1/2), 0.747+0.664i)
|
Particular Values
L(1) |
≈ |
2.45992−0.935260i |
L(21) |
≈ |
2.45992−0.935260i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1+(−2+i)T |
| 29 | 1+(2+5i)T |
good | 2 | 1−2T+2T2 |
| 7 | 1+4iT−7T2 |
| 11 | 1−iT−11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1−6T+17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1−9iT−23T2 |
| 31 | 1−2iT−31T2 |
| 37 | 1−T+37T2 |
| 41 | 1−9iT−41T2 |
| 43 | 1−T+43T2 |
| 47 | 1+8T+47T2 |
| 53 | 1+9iT−53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1−6iT−61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1−2T+71T2 |
| 73 | 1+15T+73T2 |
| 79 | 1+4iT−79T2 |
| 83 | 1−7iT−83T2 |
| 89 | 1+2iT−89T2 |
| 97 | 1+11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.31964077809128755766758793830, −10.07614116417574186181496133968, −9.777626087947438429350619065172, −7.969692709288310492536008623657, −7.00172992126185058755452452244, −5.87383952946041732115373603645, −5.34026607346045504613598208763, −4.27497789850775790366433240614, −3.33671717360574232261915277963, −1.36945748312626220732479902083,
2.22851511724058885799394735378, 3.18473962013872326817762539604, 4.74896060628684584323173366671, 5.54892767092728099639388658978, 6.10830894406878056202091453064, 6.95425659078922914311067993793, 8.696753834975057074824724346127, 9.476660412762067745707152239415, 10.66518176202523632624171352051, 11.53404899071342143673972193440