L(s) = 1 | − 2·2-s + 3-s + 2·4-s + (2 − i)5-s − 2·6-s − 4i·7-s + 9-s + (−4 + 2i)10-s − i·11-s + 2·12-s − 2i·13-s + 8i·14-s + (2 − i)15-s − 4·16-s − 6·17-s − 2·18-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.577·3-s + 4-s + (0.894 − 0.447i)5-s − 0.816·6-s − 1.51i·7-s + 0.333·9-s + (−1.26 + 0.632i)10-s − 0.301i·11-s + 0.577·12-s − 0.554i·13-s + 2.13i·14-s + (0.516 − 0.258i)15-s − 16-s − 1.45·17-s − 0.471·18-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)(0.0830+0.996i)Λ(2−s)
Λ(s)=(=(435s/2ΓC(s+1/2)L(s)(0.0830+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
435
= 3⋅5⋅29
|
Sign: |
0.0830+0.996i
|
Analytic conductor: |
3.47349 |
Root analytic conductor: |
1.86373 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ435(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 435, ( :1/2), 0.0830+0.996i)
|
Particular Values
L(1) |
≈ |
0.645544−0.593986i |
L(21) |
≈ |
0.645544−0.593986i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1+(−2+i)T |
| 29 | 1+(2−5i)T |
good | 2 | 1+2T+2T2 |
| 7 | 1+4iT−7T2 |
| 11 | 1+iT−11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1+6T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1−9iT−23T2 |
| 31 | 1+2iT−31T2 |
| 37 | 1+T+37T2 |
| 41 | 1+9iT−41T2 |
| 43 | 1+T+43T2 |
| 47 | 1−8T+47T2 |
| 53 | 1+9iT−53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1+6iT−61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1−2T+71T2 |
| 73 | 1−15T+73T2 |
| 79 | 1−4iT−79T2 |
| 83 | 1−7iT−83T2 |
| 89 | 1−2iT−89T2 |
| 97 | 1−11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64376853280538732873835196580, −9.825559453686683173643219770104, −9.158389456161346471318345142439, −8.435083951764939988995447218328, −7.38245951446731992835070226902, −6.79568999643739799447282039592, −5.15598333046146503472668996480, −3.85144277930253994974000303287, −2.11783780223542915033328418052, −0.834978617783562150213868522314,
1.96327910702602339931425882472, 2.52509541441722889404633038325, 4.57114576488874229321384665906, 6.09095042061882719816334988417, 6.82866517287244109916693696737, 8.095690002938542576854341536020, 8.875556592568695344666217360988, 9.307911693400769796865292465243, 10.16611440680651221428335497561, 10.97354914286742907840547048921