L(s) = 1 | − 2·2-s + 3-s + 2·4-s + (2 − i)5-s − 2·6-s − 4i·7-s + 9-s + (−4 + 2i)10-s − i·11-s + 2·12-s − 2i·13-s + 8i·14-s + (2 − i)15-s − 4·16-s − 6·17-s − 2·18-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.577·3-s + 4-s + (0.894 − 0.447i)5-s − 0.816·6-s − 1.51i·7-s + 0.333·9-s + (−1.26 + 0.632i)10-s − 0.301i·11-s + 0.577·12-s − 0.554i·13-s + 2.13i·14-s + (0.516 − 0.258i)15-s − 16-s − 1.45·17-s − 0.471·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0830 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0830 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.645544 - 0.593986i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.645544 - 0.593986i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 5 | \( 1 + (-2 + i)T \) |
| 29 | \( 1 + (2 - 5i)T \) |
good | 2 | \( 1 + 2T + 2T^{2} \) |
| 7 | \( 1 + 4iT - 7T^{2} \) |
| 11 | \( 1 + iT - 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 - 9iT - 23T^{2} \) |
| 31 | \( 1 + 2iT - 31T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 + 9iT - 41T^{2} \) |
| 43 | \( 1 + T + 43T^{2} \) |
| 47 | \( 1 - 8T + 47T^{2} \) |
| 53 | \( 1 + 9iT - 53T^{2} \) |
| 59 | \( 1 - 8T + 59T^{2} \) |
| 61 | \( 1 + 6iT - 61T^{2} \) |
| 67 | \( 1 - 12iT - 67T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 - 15T + 73T^{2} \) |
| 79 | \( 1 - 4iT - 79T^{2} \) |
| 83 | \( 1 - 7iT - 83T^{2} \) |
| 89 | \( 1 - 2iT - 89T^{2} \) |
| 97 | \( 1 - 11T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64376853280538732873835196580, −9.825559453686683173643219770104, −9.158389456161346471318345142439, −8.435083951764939988995447218328, −7.38245951446731992835070226902, −6.79568999643739799447282039592, −5.15598333046146503472668996480, −3.85144277930253994974000303287, −2.11783780223542915033328418052, −0.834978617783562150213868522314,
1.96327910702602339931425882472, 2.52509541441722889404633038325, 4.57114576488874229321384665906, 6.09095042061882719816334988417, 6.82866517287244109916693696737, 8.095690002938542576854341536020, 8.875556592568695344666217360988, 9.307911693400769796865292465243, 10.16611440680651221428335497561, 10.97354914286742907840547048921