L(s) = 1 | + 4.39·2-s + 3·3-s + 11.2·4-s − 5·5-s + 13.1·6-s + 31.5·7-s + 14.3·8-s + 9·9-s − 21.9·10-s − 5.28·11-s + 33.8·12-s − 5.98·13-s + 138.·14-s − 15·15-s − 27.0·16-s + 84.6·17-s + 39.5·18-s + 57.3·19-s − 56.3·20-s + 94.6·21-s − 23.2·22-s + 31.0·23-s + 43.1·24-s + 25·25-s − 26.2·26-s + 27·27-s + 355.·28-s + ⋯ |
L(s) = 1 | + 1.55·2-s + 0.577·3-s + 1.40·4-s − 0.447·5-s + 0.896·6-s + 1.70·7-s + 0.636·8-s + 0.333·9-s − 0.694·10-s − 0.144·11-s + 0.813·12-s − 0.127·13-s + 2.64·14-s − 0.258·15-s − 0.422·16-s + 1.20·17-s + 0.517·18-s + 0.692·19-s − 0.630·20-s + 0.983·21-s − 0.225·22-s + 0.281·23-s + 0.367·24-s + 0.200·25-s − 0.198·26-s + 0.192·27-s + 2.40·28-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(435s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
6.170905597 |
L(21) |
≈ |
6.170905597 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1+5T |
| 29 | 1−29T |
good | 2 | 1−4.39T+8T2 |
| 7 | 1−31.5T+343T2 |
| 11 | 1+5.28T+1.33e3T2 |
| 13 | 1+5.98T+2.19e3T2 |
| 17 | 1−84.6T+4.91e3T2 |
| 19 | 1−57.3T+6.85e3T2 |
| 23 | 1−31.0T+1.21e4T2 |
| 31 | 1+14.6T+2.97e4T2 |
| 37 | 1+7.76T+5.06e4T2 |
| 41 | 1+399.T+6.89e4T2 |
| 43 | 1+17.9T+7.95e4T2 |
| 47 | 1+262.T+1.03e5T2 |
| 53 | 1+64.9T+1.48e5T2 |
| 59 | 1−122.T+2.05e5T2 |
| 61 | 1−264.T+2.26e5T2 |
| 67 | 1−622.T+3.00e5T2 |
| 71 | 1−327.T+3.57e5T2 |
| 73 | 1+833.T+3.89e5T2 |
| 79 | 1+666.T+4.93e5T2 |
| 83 | 1+1.32e3T+5.71e5T2 |
| 89 | 1+189.T+7.04e5T2 |
| 97 | 1+137.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20779340759601399211642415999, −10.01085587433024632325871053068, −8.610778346901755367248132164311, −7.84230926907683717380523110891, −6.98366238561003080368965341153, −5.47592683839105187865401654376, −4.88801250286545525653114308774, −3.89758150034432843763641614958, −2.88660655055716560795087740868, −1.52627884677992010900054700058,
1.52627884677992010900054700058, 2.88660655055716560795087740868, 3.89758150034432843763641614958, 4.88801250286545525653114308774, 5.47592683839105187865401654376, 6.98366238561003080368965341153, 7.84230926907683717380523110891, 8.610778346901755367248132164311, 10.01085587433024632325871053068, 11.20779340759601399211642415999