Properties

Label 2-435-1.1-c3-0-39
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.39·2-s + 3·3-s + 11.2·4-s − 5·5-s + 13.1·6-s + 31.5·7-s + 14.3·8-s + 9·9-s − 21.9·10-s − 5.28·11-s + 33.8·12-s − 5.98·13-s + 138.·14-s − 15·15-s − 27.0·16-s + 84.6·17-s + 39.5·18-s + 57.3·19-s − 56.3·20-s + 94.6·21-s − 23.2·22-s + 31.0·23-s + 43.1·24-s + 25·25-s − 26.2·26-s + 27·27-s + 355.·28-s + ⋯
L(s)  = 1  + 1.55·2-s + 0.577·3-s + 1.40·4-s − 0.447·5-s + 0.896·6-s + 1.70·7-s + 0.636·8-s + 0.333·9-s − 0.694·10-s − 0.144·11-s + 0.813·12-s − 0.127·13-s + 2.64·14-s − 0.258·15-s − 0.422·16-s + 1.20·17-s + 0.517·18-s + 0.692·19-s − 0.630·20-s + 0.983·21-s − 0.225·22-s + 0.281·23-s + 0.367·24-s + 0.200·25-s − 0.198·26-s + 0.192·27-s + 2.40·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.170905597\)
\(L(\frac12)\) \(\approx\) \(6.170905597\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
5 \( 1 + 5T \)
29 \( 1 - 29T \)
good2 \( 1 - 4.39T + 8T^{2} \)
7 \( 1 - 31.5T + 343T^{2} \)
11 \( 1 + 5.28T + 1.33e3T^{2} \)
13 \( 1 + 5.98T + 2.19e3T^{2} \)
17 \( 1 - 84.6T + 4.91e3T^{2} \)
19 \( 1 - 57.3T + 6.85e3T^{2} \)
23 \( 1 - 31.0T + 1.21e4T^{2} \)
31 \( 1 + 14.6T + 2.97e4T^{2} \)
37 \( 1 + 7.76T + 5.06e4T^{2} \)
41 \( 1 + 399.T + 6.89e4T^{2} \)
43 \( 1 + 17.9T + 7.95e4T^{2} \)
47 \( 1 + 262.T + 1.03e5T^{2} \)
53 \( 1 + 64.9T + 1.48e5T^{2} \)
59 \( 1 - 122.T + 2.05e5T^{2} \)
61 \( 1 - 264.T + 2.26e5T^{2} \)
67 \( 1 - 622.T + 3.00e5T^{2} \)
71 \( 1 - 327.T + 3.57e5T^{2} \)
73 \( 1 + 833.T + 3.89e5T^{2} \)
79 \( 1 + 666.T + 4.93e5T^{2} \)
83 \( 1 + 1.32e3T + 5.71e5T^{2} \)
89 \( 1 + 189.T + 7.04e5T^{2} \)
97 \( 1 + 137.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20779340759601399211642415999, −10.01085587433024632325871053068, −8.610778346901755367248132164311, −7.84230926907683717380523110891, −6.98366238561003080368965341153, −5.47592683839105187865401654376, −4.88801250286545525653114308774, −3.89758150034432843763641614958, −2.88660655055716560795087740868, −1.52627884677992010900054700058, 1.52627884677992010900054700058, 2.88660655055716560795087740868, 3.89758150034432843763641614958, 4.88801250286545525653114308774, 5.47592683839105187865401654376, 6.98366238561003080368965341153, 7.84230926907683717380523110891, 8.610778346901755367248132164311, 10.01085587433024632325871053068, 11.20779340759601399211642415999

Graph of the $Z$-function along the critical line