Properties

Label 2-435-1.1-c3-0-32
Degree $2$
Conductor $435$
Sign $1$
Analytic cond. $25.6658$
Root an. cond. $5.06614$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.88·2-s − 3·3-s + 15.8·4-s + 5·5-s − 14.6·6-s + 5.48·7-s + 38.3·8-s + 9·9-s + 24.4·10-s + 50.1·11-s − 47.5·12-s − 20.7·13-s + 26.7·14-s − 15·15-s + 60.3·16-s − 18.8·17-s + 43.9·18-s + 78.8·19-s + 79.2·20-s − 16.4·21-s + 244.·22-s − 6.33·23-s − 114.·24-s + 25·25-s − 101.·26-s − 27·27-s + 86.9·28-s + ⋯
L(s)  = 1  + 1.72·2-s − 0.577·3-s + 1.98·4-s + 0.447·5-s − 0.996·6-s + 0.296·7-s + 1.69·8-s + 0.333·9-s + 0.772·10-s + 1.37·11-s − 1.14·12-s − 0.442·13-s + 0.511·14-s − 0.258·15-s + 0.942·16-s − 0.268·17-s + 0.575·18-s + 0.951·19-s + 0.885·20-s − 0.171·21-s + 2.37·22-s − 0.0574·23-s − 0.977·24-s + 0.200·25-s − 0.763·26-s − 0.192·27-s + 0.586·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(435\)    =    \(3 \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(25.6658\)
Root analytic conductor: \(5.06614\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 435,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.397173343\)
\(L(\frac12)\) \(\approx\) \(5.397173343\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 - 5T \)
29 \( 1 - 29T \)
good2 \( 1 - 4.88T + 8T^{2} \)
7 \( 1 - 5.48T + 343T^{2} \)
11 \( 1 - 50.1T + 1.33e3T^{2} \)
13 \( 1 + 20.7T + 2.19e3T^{2} \)
17 \( 1 + 18.8T + 4.91e3T^{2} \)
19 \( 1 - 78.8T + 6.85e3T^{2} \)
23 \( 1 + 6.33T + 1.21e4T^{2} \)
31 \( 1 - 310.T + 2.97e4T^{2} \)
37 \( 1 + 338.T + 5.06e4T^{2} \)
41 \( 1 - 353.T + 6.89e4T^{2} \)
43 \( 1 - 507.T + 7.95e4T^{2} \)
47 \( 1 + 112.T + 1.03e5T^{2} \)
53 \( 1 + 144.T + 1.48e5T^{2} \)
59 \( 1 + 342.T + 2.05e5T^{2} \)
61 \( 1 - 357.T + 2.26e5T^{2} \)
67 \( 1 + 183.T + 3.00e5T^{2} \)
71 \( 1 + 594.T + 3.57e5T^{2} \)
73 \( 1 + 622.T + 3.89e5T^{2} \)
79 \( 1 + 1.27e3T + 4.93e5T^{2} \)
83 \( 1 + 739.T + 5.71e5T^{2} \)
89 \( 1 - 906.T + 7.04e5T^{2} \)
97 \( 1 - 76.0T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20466149468208511437419850500, −10.11528034943950327350553961328, −9.033399839563561127542577279213, −7.43211937681196381835273539961, −6.53635187264162886694540698789, −5.85428167098803690945895068284, −4.86405504162719696594876375774, −4.10687724538625121853682746059, −2.81728917315718518384932292266, −1.39753963967844542091092476708, 1.39753963967844542091092476708, 2.81728917315718518384932292266, 4.10687724538625121853682746059, 4.86405504162719696594876375774, 5.85428167098803690945895068284, 6.53635187264162886694540698789, 7.43211937681196381835273539961, 9.033399839563561127542577279213, 10.11528034943950327350553961328, 11.20466149468208511437419850500

Graph of the $Z$-function along the critical line