L(s) = 1 | + 4.88·2-s − 3·3-s + 15.8·4-s + 5·5-s − 14.6·6-s + 5.48·7-s + 38.3·8-s + 9·9-s + 24.4·10-s + 50.1·11-s − 47.5·12-s − 20.7·13-s + 26.7·14-s − 15·15-s + 60.3·16-s − 18.8·17-s + 43.9·18-s + 78.8·19-s + 79.2·20-s − 16.4·21-s + 244.·22-s − 6.33·23-s − 114.·24-s + 25·25-s − 101.·26-s − 27·27-s + 86.9·28-s + ⋯ |
L(s) = 1 | + 1.72·2-s − 0.577·3-s + 1.98·4-s + 0.447·5-s − 0.996·6-s + 0.296·7-s + 1.69·8-s + 0.333·9-s + 0.772·10-s + 1.37·11-s − 1.14·12-s − 0.442·13-s + 0.511·14-s − 0.258·15-s + 0.942·16-s − 0.268·17-s + 0.575·18-s + 0.951·19-s + 0.885·20-s − 0.171·21-s + 2.37·22-s − 0.0574·23-s − 0.977·24-s + 0.200·25-s − 0.763·26-s − 0.192·27-s + 0.586·28-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(435s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.397173343 |
L(21) |
≈ |
5.397173343 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1−5T |
| 29 | 1−29T |
good | 2 | 1−4.88T+8T2 |
| 7 | 1−5.48T+343T2 |
| 11 | 1−50.1T+1.33e3T2 |
| 13 | 1+20.7T+2.19e3T2 |
| 17 | 1+18.8T+4.91e3T2 |
| 19 | 1−78.8T+6.85e3T2 |
| 23 | 1+6.33T+1.21e4T2 |
| 31 | 1−310.T+2.97e4T2 |
| 37 | 1+338.T+5.06e4T2 |
| 41 | 1−353.T+6.89e4T2 |
| 43 | 1−507.T+7.95e4T2 |
| 47 | 1+112.T+1.03e5T2 |
| 53 | 1+144.T+1.48e5T2 |
| 59 | 1+342.T+2.05e5T2 |
| 61 | 1−357.T+2.26e5T2 |
| 67 | 1+183.T+3.00e5T2 |
| 71 | 1+594.T+3.57e5T2 |
| 73 | 1+622.T+3.89e5T2 |
| 79 | 1+1.27e3T+4.93e5T2 |
| 83 | 1+739.T+5.71e5T2 |
| 89 | 1−906.T+7.04e5T2 |
| 97 | 1−76.0T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20466149468208511437419850500, −10.11528034943950327350553961328, −9.033399839563561127542577279213, −7.43211937681196381835273539961, −6.53635187264162886694540698789, −5.85428167098803690945895068284, −4.86405504162719696594876375774, −4.10687724538625121853682746059, −2.81728917315718518384932292266, −1.39753963967844542091092476708,
1.39753963967844542091092476708, 2.81728917315718518384932292266, 4.10687724538625121853682746059, 4.86405504162719696594876375774, 5.85428167098803690945895068284, 6.53635187264162886694540698789, 7.43211937681196381835273539961, 9.033399839563561127542577279213, 10.11528034943950327350553961328, 11.20466149468208511437419850500