L(s) = 1 | − 5.05·2-s + 3·3-s + 17.5·4-s − 5·5-s − 15.1·6-s + 19.3·7-s − 48.0·8-s + 9·9-s + 25.2·10-s + 6.81·11-s + 52.5·12-s + 36.9·13-s − 97.9·14-s − 15·15-s + 102.·16-s − 71.5·17-s − 45.4·18-s + 88.3·19-s − 87.5·20-s + 58.1·21-s − 34.4·22-s + 185.·23-s − 144.·24-s + 25·25-s − 186.·26-s + 27·27-s + 339.·28-s + ⋯ |
L(s) = 1 | − 1.78·2-s + 0.577·3-s + 2.18·4-s − 0.447·5-s − 1.03·6-s + 1.04·7-s − 2.12·8-s + 0.333·9-s + 0.798·10-s + 0.186·11-s + 1.26·12-s + 0.788·13-s − 1.86·14-s − 0.258·15-s + 1.60·16-s − 1.02·17-s − 0.595·18-s + 1.06·19-s − 0.978·20-s + 0.604·21-s − 0.333·22-s + 1.68·23-s − 1.22·24-s + 0.200·25-s − 1.40·26-s + 0.192·27-s + 2.29·28-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(435s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.140032156 |
L(21) |
≈ |
1.140032156 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 5 | 1+5T |
| 29 | 1−29T |
good | 2 | 1+5.05T+8T2 |
| 7 | 1−19.3T+343T2 |
| 11 | 1−6.81T+1.33e3T2 |
| 13 | 1−36.9T+2.19e3T2 |
| 17 | 1+71.5T+4.91e3T2 |
| 19 | 1−88.3T+6.85e3T2 |
| 23 | 1−185.T+1.21e4T2 |
| 31 | 1+120.T+2.97e4T2 |
| 37 | 1+117.T+5.06e4T2 |
| 41 | 1+229.T+6.89e4T2 |
| 43 | 1−66.8T+7.95e4T2 |
| 47 | 1+42.0T+1.03e5T2 |
| 53 | 1−9.42T+1.48e5T2 |
| 59 | 1+232.T+2.05e5T2 |
| 61 | 1+546.T+2.26e5T2 |
| 67 | 1−953.T+3.00e5T2 |
| 71 | 1−429.T+3.57e5T2 |
| 73 | 1−554.T+3.89e5T2 |
| 79 | 1−965.T+4.93e5T2 |
| 83 | 1−625.T+5.71e5T2 |
| 89 | 1+271.T+7.04e5T2 |
| 97 | 1−1.16e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80383635026862864231431039112, −9.490839594659093023199702024390, −8.849194633638707096754678496914, −8.207983135785276456917364210385, −7.42161245175559202207243362990, −6.62690730911304084259681656298, −4.94029591447359055997234220526, −3.35009682765527178709407456479, −1.94887964615063909224104847769, −0.912823117500316736515447719411,
0.912823117500316736515447719411, 1.94887964615063909224104847769, 3.35009682765527178709407456479, 4.94029591447359055997234220526, 6.62690730911304084259681656298, 7.42161245175559202207243362990, 8.207983135785276456917364210385, 8.849194633638707096754678496914, 9.490839594659093023199702024390, 10.80383635026862864231431039112