Properties

Label 2-432-36.31-c8-0-46
Degree $2$
Conductor $432$
Sign $-0.964 + 0.262i$
Analytic cond. $175.987$
Root an. cond. $13.2660$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−59.6 + 103. i)5-s + (2.05e3 − 1.18e3i)7-s + (1.64e4 − 9.48e3i)11-s + (1.77e4 − 3.07e4i)13-s − 9.49e4·17-s − 2.27e5i·19-s + (−3.06e5 − 1.76e5i)23-s + (1.88e5 + 3.25e5i)25-s + (−4.44e5 − 7.70e5i)29-s + (−8.98e5 − 5.18e5i)31-s + 2.82e5i·35-s − 1.51e6·37-s + (−2.10e6 + 3.65e6i)41-s + (5.17e6 − 2.98e6i)43-s + (−6.84e5 + 3.94e5i)47-s + ⋯
L(s)  = 1  + (−0.0953 + 0.165i)5-s + (0.855 − 0.493i)7-s + (1.12 − 0.647i)11-s + (0.620 − 1.07i)13-s − 1.13·17-s − 1.74i·19-s + (−1.09 − 0.631i)23-s + (0.481 + 0.834i)25-s + (−0.628 − 1.08i)29-s + (−0.972 − 0.561i)31-s + 0.188i·35-s − 0.806·37-s + (−0.746 + 1.29i)41-s + (1.51 − 0.874i)43-s + (−0.140 + 0.0809i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.262i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.964 + 0.262i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $-0.964 + 0.262i$
Analytic conductor: \(175.987\)
Root analytic conductor: \(13.2660\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (415, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :4),\ -0.964 + 0.262i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.377180467\)
\(L(\frac12)\) \(\approx\) \(1.377180467\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (59.6 - 103. i)T + (-1.95e5 - 3.38e5i)T^{2} \)
7 \( 1 + (-2.05e3 + 1.18e3i)T + (2.88e6 - 4.99e6i)T^{2} \)
11 \( 1 + (-1.64e4 + 9.48e3i)T + (1.07e8 - 1.85e8i)T^{2} \)
13 \( 1 + (-1.77e4 + 3.07e4i)T + (-4.07e8 - 7.06e8i)T^{2} \)
17 \( 1 + 9.49e4T + 6.97e9T^{2} \)
19 \( 1 + 2.27e5iT - 1.69e10T^{2} \)
23 \( 1 + (3.06e5 + 1.76e5i)T + (3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 + (4.44e5 + 7.70e5i)T + (-2.50e11 + 4.33e11i)T^{2} \)
31 \( 1 + (8.98e5 + 5.18e5i)T + (4.26e11 + 7.38e11i)T^{2} \)
37 \( 1 + 1.51e6T + 3.51e12T^{2} \)
41 \( 1 + (2.10e6 - 3.65e6i)T + (-3.99e12 - 6.91e12i)T^{2} \)
43 \( 1 + (-5.17e6 + 2.98e6i)T + (5.84e12 - 1.01e13i)T^{2} \)
47 \( 1 + (6.84e5 - 3.94e5i)T + (1.19e13 - 2.06e13i)T^{2} \)
53 \( 1 - 9.03e6T + 6.22e13T^{2} \)
59 \( 1 + (-1.10e6 - 6.38e5i)T + (7.34e13 + 1.27e14i)T^{2} \)
61 \( 1 + (7.13e5 + 1.23e6i)T + (-9.58e13 + 1.66e14i)T^{2} \)
67 \( 1 + (1.96e7 + 1.13e7i)T + (2.03e14 + 3.51e14i)T^{2} \)
71 \( 1 - 4.77e7iT - 6.45e14T^{2} \)
73 \( 1 + 2.77e7T + 8.06e14T^{2} \)
79 \( 1 + (4.32e6 - 2.49e6i)T + (7.58e14 - 1.31e15i)T^{2} \)
83 \( 1 + (-3.46e7 + 2.00e7i)T + (1.12e15 - 1.95e15i)T^{2} \)
89 \( 1 + 3.96e7T + 3.93e15T^{2} \)
97 \( 1 + (-3.77e7 - 6.53e7i)T + (-3.91e15 + 6.78e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.211513783252296510271138877537, −8.566829523095772214452612984266, −7.57276555528214660855911258176, −6.65628457959546353638603445353, −5.67279894634245338575304973856, −4.48929251614356349175838047761, −3.68115786272104772881491816323, −2.39858031521749300377255265255, −1.16138211724600169227847744978, −0.25021111424738958099978735985, 1.60577830594164149158577692580, 1.85408880947648908397695500406, 3.73694608077095583711032966820, 4.37902988946495560166829679369, 5.56882266350032509070432059593, 6.53478890262571949576003888814, 7.47826670317078203636749619490, 8.684342685188959719476748579473, 9.032406528031134237125213557910, 10.25450349192178919168746978888

Graph of the $Z$-function along the critical line