Properties

Label 2-432-3.2-c8-0-49
Degree $2$
Conductor $432$
Sign $i$
Analytic cond. $175.987$
Root an. cond. $13.2660$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.14e3i·5-s + 618.·7-s + 5.40e3i·11-s + 2.45e4·13-s − 1.13e4i·17-s − 3.87e4·19-s − 3.47e5i·23-s − 9.12e5·25-s − 5.13e5i·29-s + 1.02e6·31-s + 7.05e5i·35-s − 2.38e6·37-s + 4.26e6i·41-s − 3.81e6·43-s − 3.71e6i·47-s + ⋯
L(s)  = 1  + 1.82i·5-s + 0.257·7-s + 0.369i·11-s + 0.859·13-s − 0.135i·17-s − 0.297·19-s − 1.24i·23-s − 2.33·25-s − 0.725i·29-s + 1.11·31-s + 0.470i·35-s − 1.27·37-s + 1.50i·41-s − 1.11·43-s − 0.760i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $i$
Analytic conductor: \(175.987\)
Root analytic conductor: \(13.2660\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :4),\ i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.4935400271\)
\(L(\frac12)\) \(\approx\) \(0.4935400271\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 1.14e3iT - 3.90e5T^{2} \)
7 \( 1 - 618.T + 5.76e6T^{2} \)
11 \( 1 - 5.40e3iT - 2.14e8T^{2} \)
13 \( 1 - 2.45e4T + 8.15e8T^{2} \)
17 \( 1 + 1.13e4iT - 6.97e9T^{2} \)
19 \( 1 + 3.87e4T + 1.69e10T^{2} \)
23 \( 1 + 3.47e5iT - 7.83e10T^{2} \)
29 \( 1 + 5.13e5iT - 5.00e11T^{2} \)
31 \( 1 - 1.02e6T + 8.52e11T^{2} \)
37 \( 1 + 2.38e6T + 3.51e12T^{2} \)
41 \( 1 - 4.26e6iT - 7.98e12T^{2} \)
43 \( 1 + 3.81e6T + 1.16e13T^{2} \)
47 \( 1 + 3.71e6iT - 2.38e13T^{2} \)
53 \( 1 + 6.10e6iT - 6.22e13T^{2} \)
59 \( 1 + 1.02e7iT - 1.46e14T^{2} \)
61 \( 1 + 1.28e7T + 1.91e14T^{2} \)
67 \( 1 + 3.05e7T + 4.06e14T^{2} \)
71 \( 1 + 7.37e6iT - 6.45e14T^{2} \)
73 \( 1 - 1.85e7T + 8.06e14T^{2} \)
79 \( 1 + 3.10e7T + 1.51e15T^{2} \)
83 \( 1 + 2.33e7iT - 2.25e15T^{2} \)
89 \( 1 + 3.49e7iT - 3.93e15T^{2} \)
97 \( 1 - 2.06e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.928467372087188220707107736080, −8.547919249602131378876390307031, −7.69504811319682026942425323698, −6.60855527708035782669055342212, −6.27193926879709305033742308304, −4.74769715513142463879594780780, −3.57763793348940339813923537337, −2.73647649748508919686605202116, −1.72696081184901965926157209338, −0.092625370636652013999604552437, 1.08155261834890182808564752725, 1.68361779633952009715377841994, 3.41811148265853697463198894302, 4.43984228106724144567601983547, 5.27859031577542335381880520990, 6.08030924978726209424461532486, 7.50599102413842064423008062362, 8.554442383647271424366019974153, 8.825079863241881498488437580618, 9.895505205414489986764756834962

Graph of the $Z$-function along the critical line