Properties

Label 2-432-3.2-c8-0-37
Degree $2$
Conductor $432$
Sign $-i$
Analytic cond. $175.987$
Root an. cond. $13.2660$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 126. i·5-s + 2.83e3·7-s + 2.74e4i·11-s + 4.70e4·13-s + 1.47e5i·17-s + 1.94e5·19-s + 1.32e5i·23-s + 3.74e5·25-s + 3.67e5i·29-s + 1.81e5·31-s + 3.58e5i·35-s − 9.84e5·37-s + 3.24e6i·41-s − 9.39e5·43-s − 6.65e6i·47-s + ⋯
L(s)  = 1  + 0.202i·5-s + 1.17·7-s + 1.87i·11-s + 1.64·13-s + 1.77i·17-s + 1.49·19-s + 0.472i·23-s + 0.959·25-s + 0.520i·29-s + 0.196·31-s + 0.238i·35-s − 0.525·37-s + 1.15i·41-s − 0.274·43-s − 1.36i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $-i$
Analytic conductor: \(175.987\)
Root analytic conductor: \(13.2660\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :4),\ -i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(3.359986137\)
\(L(\frac12)\) \(\approx\) \(3.359986137\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 126. iT - 3.90e5T^{2} \)
7 \( 1 - 2.83e3T + 5.76e6T^{2} \)
11 \( 1 - 2.74e4iT - 2.14e8T^{2} \)
13 \( 1 - 4.70e4T + 8.15e8T^{2} \)
17 \( 1 - 1.47e5iT - 6.97e9T^{2} \)
19 \( 1 - 1.94e5T + 1.69e10T^{2} \)
23 \( 1 - 1.32e5iT - 7.83e10T^{2} \)
29 \( 1 - 3.67e5iT - 5.00e11T^{2} \)
31 \( 1 - 1.81e5T + 8.52e11T^{2} \)
37 \( 1 + 9.84e5T + 3.51e12T^{2} \)
41 \( 1 - 3.24e6iT - 7.98e12T^{2} \)
43 \( 1 + 9.39e5T + 1.16e13T^{2} \)
47 \( 1 + 6.65e6iT - 2.38e13T^{2} \)
53 \( 1 - 1.20e7iT - 6.22e13T^{2} \)
59 \( 1 + 1.84e6iT - 1.46e14T^{2} \)
61 \( 1 + 1.24e7T + 1.91e14T^{2} \)
67 \( 1 - 1.55e7T + 4.06e14T^{2} \)
71 \( 1 + 4.32e7iT - 6.45e14T^{2} \)
73 \( 1 - 3.01e7T + 8.06e14T^{2} \)
79 \( 1 + 3.66e7T + 1.51e15T^{2} \)
83 \( 1 + 6.93e7iT - 2.25e15T^{2} \)
89 \( 1 + 7.27e7iT - 3.93e15T^{2} \)
97 \( 1 - 7.28e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19626776121486187461829372679, −9.062008766998412556604551745172, −8.170405517971273891113284934417, −7.39831330343754992555694393336, −6.37023472047898784938132192376, −5.23944303460757074493513482893, −4.36296589082084545461980596178, −3.32490572063772446926851344722, −1.72000976880548499940810621538, −1.35004485580398923026909225493, 0.71368869035331428366648177633, 1.17363023876483424524518026032, 2.78158980362298150435817787623, 3.69297043075237231847522886025, 5.01611530871264227862407151406, 5.65692272282716252350624676353, 6.81201914787269813714793296820, 8.020950965344667248050254066434, 8.564511100496807686618908353604, 9.396284966817378861486757804958

Graph of the $Z$-function along the critical line