Properties

Label 2-432-12.11-c3-0-5
Degree $2$
Conductor $432$
Sign $-i$
Analytic cond. $25.4888$
Root an. cond. $5.04864$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12i·5-s + 5.19i·7-s + 62.3·11-s + 7·13-s − 84i·17-s + 67.5i·19-s − 62.3·23-s − 19·25-s + 168i·29-s + 259. i·31-s − 62.3·35-s − 97·37-s + 72i·41-s + 363. i·43-s − 436.·47-s + ⋯
L(s)  = 1  + 1.07i·5-s + 0.280i·7-s + 1.70·11-s + 0.149·13-s − 1.19i·17-s + 0.815i·19-s − 0.565·23-s − 0.151·25-s + 1.07i·29-s + 1.50i·31-s − 0.301·35-s − 0.430·37-s + 0.274i·41-s + 1.28i·43-s − 1.35·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $-i$
Analytic conductor: \(25.4888\)
Root analytic conductor: \(5.04864\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :3/2),\ -i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.902853602\)
\(L(\frac12)\) \(\approx\) \(1.902853602\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 12iT - 125T^{2} \)
7 \( 1 - 5.19iT - 343T^{2} \)
11 \( 1 - 62.3T + 1.33e3T^{2} \)
13 \( 1 - 7T + 2.19e3T^{2} \)
17 \( 1 + 84iT - 4.91e3T^{2} \)
19 \( 1 - 67.5iT - 6.85e3T^{2} \)
23 \( 1 + 62.3T + 1.21e4T^{2} \)
29 \( 1 - 168iT - 2.43e4T^{2} \)
31 \( 1 - 259. iT - 2.97e4T^{2} \)
37 \( 1 + 97T + 5.06e4T^{2} \)
41 \( 1 - 72iT - 6.89e4T^{2} \)
43 \( 1 - 363. iT - 7.95e4T^{2} \)
47 \( 1 + 436.T + 1.03e5T^{2} \)
53 \( 1 + 504iT - 1.48e5T^{2} \)
59 \( 1 - 436.T + 2.05e5T^{2} \)
61 \( 1 + 133T + 2.26e5T^{2} \)
67 \( 1 - 545. iT - 3.00e5T^{2} \)
71 \( 1 - 498.T + 3.57e5T^{2} \)
73 \( 1 + 497T + 3.89e5T^{2} \)
79 \( 1 - 1.12e3iT - 4.93e5T^{2} \)
83 \( 1 - 872.T + 5.71e5T^{2} \)
89 \( 1 - 1.16e3iT - 7.04e5T^{2} \)
97 \( 1 + 749T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.04869271204139770479744137674, −10.04173395899641769414687212163, −9.244428523339295185568538494241, −8.261918711209258603287937108009, −6.91693747512994848825464126872, −6.58583534537462460750784443565, −5.27446917888614101625513221848, −3.87143365449609969800654649629, −2.93890193350997548980558054556, −1.43091112574679310413471752487, 0.67642282922318683444706751879, 1.85327749726469548426947438164, 3.80309465254805331243007853393, 4.45688962217178384699447685032, 5.79588771665781368154260526421, 6.65703171997621983240572098479, 7.893400882531479888949978768263, 8.825419251964789224374093174785, 9.391823153486780834160672070260, 10.48034791464414079501552583120

Graph of the $Z$-function along the critical line