L(s) = 1 | + 13.3i·5-s + 19.7i·7-s + 30.8·11-s + 72.3·13-s + 0.430i·17-s − 22.1i·19-s − 170.·23-s − 54.3·25-s + 269. i·29-s + 74.4i·31-s − 264.·35-s − 287.·37-s + 136. i·41-s − 407. i·43-s + 245.·47-s + ⋯ |
L(s) = 1 | + 1.19i·5-s + 1.06i·7-s + 0.844·11-s + 1.54·13-s + 0.00614i·17-s − 0.267i·19-s − 1.54·23-s − 0.434·25-s + 1.72i·29-s + 0.431i·31-s − 1.27·35-s − 1.27·37-s + 0.521i·41-s − 1.44i·43-s + 0.762·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.5 - 0.866i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.815349995\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.815349995\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 13.3iT - 125T^{2} \) |
| 7 | \( 1 - 19.7iT - 343T^{2} \) |
| 11 | \( 1 - 30.8T + 1.33e3T^{2} \) |
| 13 | \( 1 - 72.3T + 2.19e3T^{2} \) |
| 17 | \( 1 - 0.430iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 22.1iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 170.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 269. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 74.4iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 287.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 136. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 407. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 245.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 686. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 437.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 437.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 312. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 356.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 434.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 544. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 1.42e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 21.6iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 273.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97884057171252211640297419687, −10.33545953737909227681337508522, −9.056300154634384570233288502040, −8.516064160990477197993142893719, −7.14317884364119441014960310117, −6.34786841723425157622980565996, −5.57370510739316837923240940092, −3.91818132539597465826074870813, −2.99088620039862275517369946625, −1.65794004840322212209700559744,
0.62534123095145325551838549072, 1.63223349127180174178892047862, 3.80233077029571880167730659434, 4.28545963183724762223200672371, 5.70064824001362034633836133367, 6.58186570410277785892047426363, 7.889928389690569161061528416826, 8.544577483100393458356325557501, 9.505995274925178147636535057622, 10.37368441757143549655905095046