Properties

Label 2-432-12.11-c3-0-11
Degree $2$
Conductor $432$
Sign $0.866 + 0.5i$
Analytic cond. $25.4888$
Root an. cond. $5.04864$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·7-s + 19·13-s − 29.4i·19-s + 125·25-s − 155. i·31-s + 323·37-s − 218. i·43-s + 340·49-s + 719·61-s − 1.08e3i·67-s + 919·73-s + 219. i·79-s − 32.9i·91-s + 523·97-s − 1.06e3i·103-s + ⋯
L(s)  = 1  − 0.0935i·7-s + 0.405·13-s − 0.355i·19-s + 25-s − 0.903i·31-s + 1.43·37-s − 0.773i·43-s + 0.991·49-s + 1.50·61-s − 1.98i·67-s + 1.47·73-s + 0.313i·79-s − 0.0379i·91-s + 0.547·97-s − 1.01i·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(432\)    =    \(2^{4} \cdot 3^{3}\)
Sign: $0.866 + 0.5i$
Analytic conductor: \(25.4888\)
Root analytic conductor: \(5.04864\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{432} (431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 432,\ (\ :3/2),\ 0.866 + 0.5i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.890205073\)
\(L(\frac12)\) \(\approx\) \(1.890205073\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 125T^{2} \)
7 \( 1 + 1.73iT - 343T^{2} \)
11 \( 1 + 1.33e3T^{2} \)
13 \( 1 - 19T + 2.19e3T^{2} \)
17 \( 1 - 4.91e3T^{2} \)
19 \( 1 + 29.4iT - 6.85e3T^{2} \)
23 \( 1 + 1.21e4T^{2} \)
29 \( 1 - 2.43e4T^{2} \)
31 \( 1 + 155. iT - 2.97e4T^{2} \)
37 \( 1 - 323T + 5.06e4T^{2} \)
41 \( 1 - 6.89e4T^{2} \)
43 \( 1 + 218. iT - 7.95e4T^{2} \)
47 \( 1 + 1.03e5T^{2} \)
53 \( 1 - 1.48e5T^{2} \)
59 \( 1 + 2.05e5T^{2} \)
61 \( 1 - 719T + 2.26e5T^{2} \)
67 \( 1 + 1.08e3iT - 3.00e5T^{2} \)
71 \( 1 + 3.57e5T^{2} \)
73 \( 1 - 919T + 3.89e5T^{2} \)
79 \( 1 - 219. iT - 4.93e5T^{2} \)
83 \( 1 + 5.71e5T^{2} \)
89 \( 1 - 7.04e5T^{2} \)
97 \( 1 - 523T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.74764018789133982820915693502, −9.735486889017234240852597847880, −8.867779396507314821856682223617, −7.925985084282022187651443511302, −6.92221803566065232524758835513, −5.95165823242405467129049577517, −4.82049096425990081767150158800, −3.69594475583198303885973765867, −2.37894200608739208586959787653, −0.77821972173069345704641639240, 1.07382989430580318477318560127, 2.62028524574978642979261002363, 3.87049853575799998767040039962, 5.04057753009833443310019609852, 6.10705670820890072819566531428, 7.06633156338691462689860124268, 8.144185094913710438741716766133, 8.954453452551579021295845160875, 9.944035607775396011321778082709, 10.82159686235251345579612532263

Graph of the $Z$-function along the critical line