L(s) = 1 | + (0.468 + 0.485i)2-s + (1.59 + 2.61i)3-s + (0.129 − 3.54i)4-s + (1.20 − 1.68i)5-s + (−0.523 + 2.00i)6-s + (8.95 + 4.60i)7-s + (3.78 − 3.39i)8-s + (−0.190 + 0.369i)9-s + (1.37 − 0.203i)10-s + (−6.35 − 4.20i)11-s + (9.48 − 5.32i)12-s + (4.93 + 4.75i)13-s + (1.95 + 6.49i)14-s + (6.32 + 0.463i)15-s + (−10.7 − 0.784i)16-s + (9.97 − 15.0i)17-s + ⋯ |
L(s) = 1 | + (0.234 + 0.242i)2-s + (0.532 + 0.873i)3-s + (0.0323 − 0.885i)4-s + (0.240 − 0.336i)5-s + (−0.0872 + 0.333i)6-s + (1.27 + 0.657i)7-s + (0.473 − 0.424i)8-s + (−0.0211 + 0.0411i)9-s + (0.137 − 0.0203i)10-s + (−0.577 − 0.382i)11-s + (0.790 − 0.443i)12-s + (0.379 + 0.366i)13-s + (0.139 + 0.464i)14-s + (0.421 + 0.0308i)15-s + (−0.670 − 0.0490i)16-s + (0.586 − 0.886i)17-s + ⋯ |
Λ(s)=(=(431s/2ΓC(s)L(s)(0.986−0.161i)Λ(3−s)
Λ(s)=(=(431s/2ΓC(s+1)L(s)(0.986−0.161i)Λ(1−s)
Degree: |
2 |
Conductor: |
431
|
Sign: |
0.986−0.161i
|
Analytic conductor: |
11.7438 |
Root analytic conductor: |
3.42693 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ431(428,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 431, ( :1), 0.986−0.161i)
|
Particular Values
L(23) |
≈ |
2.82300+0.229247i |
L(21) |
≈ |
2.82300+0.229247i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 431 | 1+(134.−409.i)T |
good | 2 | 1+(−0.468−0.485i)T+(−0.146+3.99i)T2 |
| 3 | 1+(−1.59−2.61i)T+(−4.11+8.00i)T2 |
| 5 | 1+(−1.20+1.68i)T+(−8.07−23.6i)T2 |
| 7 | 1+(−8.95−4.60i)T+(28.5+39.8i)T2 |
| 11 | 1+(6.35+4.20i)T+(47.3+111.i)T2 |
| 13 | 1+(−4.93−4.75i)T+(6.17+168.i)T2 |
| 17 | 1+(−9.97+15.0i)T+(−113.−265.i)T2 |
| 19 | 1+(14.2+19.8i)T+(−116.+341.i)T2 |
| 23 | 1+(−9.67−11.6i)T+(−96.0+520.i)T2 |
| 29 | 1+(0.100+2.74i)T+(−838.+61.3i)T2 |
| 31 | 1+(−5.22+1.36i)T+(838.−470.i)T2 |
| 37 | 1+(−4.46−14.8i)T+(−1.14e3+755.i)T2 |
| 41 | 1+(−32.6−2.38i)T+(1.66e3+244.i)T2 |
| 43 | 1+(7.83−53.2i)T+(−1.77e3−532.i)T2 |
| 47 | 1+(−8.23+21.5i)T+(−1.64e3−1.47e3i)T2 |
| 53 | 1+(47.7−18.2i)T+(2.09e3−1.87e3i)T2 |
| 59 | 1+(−20.3−21.1i)T+(−127.+3.47e3i)T2 |
| 61 | 1+(60.7−28.4i)T+(2.38e3−2.86e3i)T2 |
| 67 | 1+(−4.09−13.6i)T+(−3.74e3+2.47e3i)T2 |
| 71 | 1+(23.9−62.6i)T+(−3.75e3−3.36e3i)T2 |
| 73 | 1+(3.79−17.0i)T+(−4.82e3−2.26e3i)T2 |
| 79 | 1+(113.−12.5i)T+(6.09e3−1.35e3i)T2 |
| 83 | 1+(8.34−5.09i)T+(3.14e3−6.12e3i)T2 |
| 89 | 1+(−42.4+54.9i)T+(−2.00e3−7.66e3i)T2 |
| 97 | 1+(−17.7+161.i)T+(−9.18e3−2.04e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99564979566923912473378329689, −9.927067122220901717454135921620, −9.157118234635019351429834242493, −8.537716035022160365458160245904, −7.26657261845087847133644149841, −5.92519063750801597950612984052, −5.02756596342150210639032490781, −4.46804124654510730770525369076, −2.79761797217816188597159997668, −1.29529483612786813411561403737,
1.57860583774240031244119104098, 2.51306077297812044347728201857, 3.86445091604725586348798161434, 4.90798676346583394803043143658, 6.43605110345122437718080741280, 7.64210210717608029592189704966, 7.902165340098530654130890873760, 8.655368364097344414707468200866, 10.52047648429413114470863180068, 10.72900049844882353721529739571