L(s) = 1 | + (−9.57 + 16.5i)5-s + (20.2 + 35.1i)11-s + 50.4·13-s + (−25.9 − 44.9i)17-s + (16.5 − 28.6i)19-s + (31.4 − 54.4i)23-s + (−120. − 209. i)25-s − 129.·29-s + (−121. − 209. i)31-s + (194. − 337. i)37-s + 470.·41-s − 125.·43-s + (−193. + 334. i)47-s + (−305. − 529. i)53-s − 777.·55-s + ⋯ |
L(s) = 1 | + (−0.855 + 1.48i)5-s + (0.556 + 0.963i)11-s + 1.07·13-s + (−0.370 − 0.641i)17-s + (0.200 − 0.346i)19-s + (0.284 − 0.493i)23-s + (−0.965 − 1.67i)25-s − 0.831·29-s + (−0.702 − 1.21i)31-s + (0.865 − 1.49i)37-s + 1.79·41-s − 0.443·43-s + (−0.599 + 1.03i)47-s + (−0.792 − 1.37i)53-s − 1.90·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.318i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.483739857\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.483739857\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (9.57 - 16.5i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-20.2 - 35.1i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 50.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + (25.9 + 44.9i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-16.5 + 28.6i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-31.4 + 54.4i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 129.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (121. + 209. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-194. + 337. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 470.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 125.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (193. - 334. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (305. + 529. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-113. - 196. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (362. - 628. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (522. + 905. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 169.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-190. - 330. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-580. + 1.00e3i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 808.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (159. - 277. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.13e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.045372817159120731735209568557, −7.73781457399856824684967139011, −7.43056331267512512072340573163, −6.58077648138267587334328423882, −5.93504048154614034613598139814, −4.50111028689513987132087251226, −3.86004270800906453602863884828, −2.96585871650673522863396454244, −2.00032308049281848036165825004, −0.40791518830276459777036642571,
0.883982853640930134899501479969, 1.51826494139700207654903527441, 3.36056608093007440806040358563, 3.92432348123187948861290986197, 4.82533101205749247707365787929, 5.70756261181702471544744026226, 6.46031443793160947048527061404, 7.69633832351037159913306510280, 8.272989582455424032674323950498, 8.909770602364927378270403956972