L(s) = 1 | + (3 − 5.19i)5-s + (−6 − 10.3i)11-s − 82·13-s + (−15 − 25.9i)17-s + (−34 + 58.8i)19-s + (108 − 187. i)23-s + (44.5 + 77.0i)25-s − 246·29-s + (56 + 96.9i)31-s + (−55 + 95.2i)37-s + 246·41-s − 172·43-s + (96 − 166. i)47-s + (279 + 483. i)53-s − 72·55-s + ⋯ |
L(s) = 1 | + (0.268 − 0.464i)5-s + (−0.164 − 0.284i)11-s − 1.74·13-s + (−0.214 − 0.370i)17-s + (−0.410 + 0.711i)19-s + (0.979 − 1.69i)23-s + (0.355 + 0.616i)25-s − 1.57·29-s + (0.324 + 0.561i)31-s + (−0.244 + 0.423i)37-s + 0.937·41-s − 0.609·43-s + (0.297 − 0.516i)47-s + (0.723 + 1.25i)53-s − 0.176·55-s + ⋯ |
Λ(s)=(=(1764s/2ΓC(s)L(s)(0.605−0.795i)Λ(4−s)
Λ(s)=(=(1764s/2ΓC(s+3/2)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
1764
= 22⋅32⋅72
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
104.079 |
Root analytic conductor: |
10.2019 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1764(1549,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1764, ( :3/2), 0.605−0.795i)
|
Particular Values
L(2) |
≈ |
1.306355275 |
L(21) |
≈ |
1.306355275 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1 |
good | 5 | 1+(−3+5.19i)T+(−62.5−108.i)T2 |
| 11 | 1+(6+10.3i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+82T+2.19e3T2 |
| 17 | 1+(15+25.9i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(34−58.8i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−108+187.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+246T+2.43e4T2 |
| 31 | 1+(−56−96.9i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(55−95.2i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1−246T+6.89e4T2 |
| 43 | 1+172T+7.95e4T2 |
| 47 | 1+(−96+166.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(−279−483.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−270−467.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(55−95.2i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(70+121.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−840T+3.57e5T2 |
| 73 | 1+(−275−476.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(−104+180.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+516T+5.71e5T2 |
| 89 | 1+(699−1.21e3i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1−1.58e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.052221382273805301408406346154, −8.375699390839973244842821999413, −7.37959852258347167941793365177, −6.81063842696461118897875355416, −5.66017500480244854917819616112, −5.01126581062462448500396139857, −4.23005774667191642212710346574, −2.93537256464650623688272063301, −2.12033042530444823069714710582, −0.802563063807657712302807523489,
0.34269278439099835618194304101, 1.94108027749357494432653834038, 2.64690620064750497691621759005, 3.74940038934871434895651144395, 4.83991701422585894997080783907, 5.46909049364320176268653737552, 6.56478314621434743514068378396, 7.26146181736350600957438556331, 7.82018216569863322577176746571, 9.020422165924869893164370914615