L(s) = 1 | + (3 − 5.19i)5-s + (−6 − 10.3i)11-s − 82·13-s + (−15 − 25.9i)17-s + (−34 + 58.8i)19-s + (108 − 187. i)23-s + (44.5 + 77.0i)25-s − 246·29-s + (56 + 96.9i)31-s + (−55 + 95.2i)37-s + 246·41-s − 172·43-s + (96 − 166. i)47-s + (279 + 483. i)53-s − 72·55-s + ⋯ |
L(s) = 1 | + (0.268 − 0.464i)5-s + (−0.164 − 0.284i)11-s − 1.74·13-s + (−0.214 − 0.370i)17-s + (−0.410 + 0.711i)19-s + (0.979 − 1.69i)23-s + (0.355 + 0.616i)25-s − 1.57·29-s + (0.324 + 0.561i)31-s + (−0.244 + 0.423i)37-s + 0.937·41-s − 0.609·43-s + (0.297 − 0.516i)47-s + (0.723 + 1.25i)53-s − 0.176·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.306355275\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.306355275\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-3 + 5.19i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (6 + 10.3i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 82T + 2.19e3T^{2} \) |
| 17 | \( 1 + (15 + 25.9i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (34 - 58.8i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-108 + 187. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 246T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-56 - 96.9i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (55 - 95.2i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 246T + 6.89e4T^{2} \) |
| 43 | \( 1 + 172T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-96 + 166. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-279 - 483. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-270 - 467. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (55 - 95.2i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (70 + 121. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 840T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-275 - 476. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-104 + 180. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 516T + 5.71e5T^{2} \) |
| 89 | \( 1 + (699 - 1.21e3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.58e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.052221382273805301408406346154, −8.375699390839973244842821999413, −7.37959852258347167941793365177, −6.81063842696461118897875355416, −5.66017500480244854917819616112, −5.01126581062462448500396139857, −4.23005774667191642212710346574, −2.93537256464650623688272063301, −2.12033042530444823069714710582, −0.802563063807657712302807523489,
0.34269278439099835618194304101, 1.94108027749357494432653834038, 2.64690620064750497691621759005, 3.74940038934871434895651144395, 4.83991701422585894997080783907, 5.46909049364320176268653737552, 6.56478314621434743514068378396, 7.26146181736350600957438556331, 7.82018216569863322577176746571, 9.020422165924869893164370914615