L(s) = 1 | + (−4.89 − 2.82i)5-s + (1.22 − 0.707i)11-s − 16·13-s + (−14.6 + 8.48i)17-s + (−4 + 6.92i)19-s + (11.0 + 6.36i)23-s + (3.49 + 6.06i)25-s − 24.0i·29-s + (28 + 48.4i)31-s + (−12 + 20.7i)37-s − 50.9i·41-s + 40·43-s + (9.79 + 5.65i)47-s + (37.9 − 21.9i)53-s − 8·55-s + ⋯ |
L(s) = 1 | + (−0.979 − 0.565i)5-s + (0.111 − 0.0642i)11-s − 1.23·13-s + (−0.864 + 0.499i)17-s + (−0.210 + 0.364i)19-s + (0.479 + 0.276i)23-s + (0.139 + 0.242i)25-s − 0.829i·29-s + (0.903 + 1.56i)31-s + (−0.324 + 0.561i)37-s − 1.24i·41-s + 0.930·43-s + (0.208 + 0.120i)47-s + (0.716 − 0.413i)53-s − 0.145·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0348i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0348i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.108507590\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.108507590\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (4.89 + 2.82i)T + (12.5 + 21.6i)T^{2} \) |
| 11 | \( 1 + (-1.22 + 0.707i)T + (60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + 16T + 169T^{2} \) |
| 17 | \( 1 + (14.6 - 8.48i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (4 - 6.92i)T + (-180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (-11.0 - 6.36i)T + (264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + 24.0iT - 841T^{2} \) |
| 31 | \( 1 + (-28 - 48.4i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (12 - 20.7i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + 50.9iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 40T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-9.79 - 5.65i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-37.9 + 21.9i)T + (1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (9.79 - 5.65i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (20 - 34.6i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-13 - 22.5i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 134. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (44 + 76.2i)T + (-2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (41 - 71.0i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 - 101. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (53.8 + 31.1i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 - 40T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.896008665478431253550358915519, −8.408864103525983140285572958004, −7.53861907147353873602427857932, −6.89899102938230091797500897188, −5.84906355342773708557797053735, −4.77516375120907958086609824480, −4.28552605306789125135211272141, −3.21722417026710628106044498867, −2.03439647130152091312983862794, −0.59617477347347157010533631715,
0.52213567004532524772303470214, 2.29013538117599211803478682538, 3.07165319959732803805232893240, 4.22523701002278110151681656286, 4.79212825007632200159464038723, 5.98113391507046125708665951548, 7.05127430460807152566254865097, 7.32718270989387138091844950624, 8.257642652110854330036280010605, 9.125074695944763134576306589559