L(s) = 1 | + (6.60 − 3.81i)5-s + (4.41 + 2.55i)11-s + 20.7·13-s + (22.7 + 13.1i)17-s + (11.1 + 19.3i)19-s + (−34.4 + 19.8i)23-s + (16.5 − 28.6i)25-s − 7.62i·29-s + (−5.89 + 10.2i)31-s + (30.1 + 52.2i)37-s + 11.8i·41-s − 30.3·43-s + (−33.0 + 19.0i)47-s + (5.11 + 2.95i)53-s + 38.9·55-s + ⋯ |
L(s) = 1 | + (1.32 − 0.762i)5-s + (0.401 + 0.231i)11-s + 1.59·13-s + (1.33 + 0.772i)17-s + (0.588 + 1.01i)19-s + (−1.49 + 0.864i)23-s + (0.662 − 1.14i)25-s − 0.262i·29-s + (−0.190 + 0.329i)31-s + (0.815 + 1.41i)37-s + 0.287i·41-s − 0.705·43-s + (−0.703 + 0.406i)47-s + (0.0964 + 0.0556i)53-s + 0.707·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 - 0.216i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.976 - 0.216i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.114124209\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.114124209\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-6.60 + 3.81i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-4.41 - 2.55i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 - 20.7T + 169T^{2} \) |
| 17 | \( 1 + (-22.7 - 13.1i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-11.1 - 19.3i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (34.4 - 19.8i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + 7.62iT - 841T^{2} \) |
| 31 | \( 1 + (5.89 - 10.2i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-30.1 - 52.2i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 11.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 30.3T + 1.84e3T^{2} \) |
| 47 | \( 1 + (33.0 - 19.0i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-5.11 - 2.95i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-38.2 - 22.1i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (24.7 + 42.8i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (31.5 - 54.6i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 41.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (2.08 - 3.61i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-20.8 - 36.1i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + 145. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (38.0 - 21.9i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 39.5T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.243476113584040690948391665263, −8.328252976329618151223627197854, −7.83716473528444745473967020613, −6.36149450661775312160999996718, −5.94471415538512272210133712137, −5.31329907679656931799453310610, −4.09559364494262433067402234510, −3.26728995801569193413241081049, −1.59862380903962026508740446226, −1.36084919712681912641688969989,
0.908588184103309211267015565575, 2.05438406090068790183962572040, 3.03400200695606223979205688692, 3.90898869284476824952253248575, 5.27116074180379929915857122484, 5.96487890073195691145220835203, 6.50164583642379286433618692967, 7.40289286928918002170281779656, 8.384912934905969364217702487312, 9.242399476362357059757761714415