Properties

Label 2-42e2-1.1-c3-0-41
Degree $2$
Conductor $1764$
Sign $-1$
Analytic cond. $104.079$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 89·13-s − 163·19-s − 125·25-s − 19·31-s − 433·37-s + 449·43-s + 182·61-s + 1.00e3·67-s − 919·73-s + 503·79-s − 1.33e3·97-s − 19·103-s − 1.56e3·109-s + ⋯
L(s)  = 1  + 1.89·13-s − 1.96·19-s − 25-s − 0.110·31-s − 1.92·37-s + 1.59·43-s + 0.382·61-s + 1.83·67-s − 1.47·73-s + 0.716·79-s − 1.39·97-s − 0.0181·103-s − 1.37·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(104.079\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1764} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1764,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + p^{3} T^{2} \)
11 \( 1 + p^{3} T^{2} \)
13 \( 1 - 89 T + p^{3} T^{2} \)
17 \( 1 + p^{3} T^{2} \)
19 \( 1 + 163 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + p^{3} T^{2} \)
31 \( 1 + 19 T + p^{3} T^{2} \)
37 \( 1 + 433 T + p^{3} T^{2} \)
41 \( 1 + p^{3} T^{2} \)
43 \( 1 - 449 T + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 + p^{3} T^{2} \)
59 \( 1 + p^{3} T^{2} \)
61 \( 1 - 182 T + p^{3} T^{2} \)
67 \( 1 - 1007 T + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 + 919 T + p^{3} T^{2} \)
79 \( 1 - 503 T + p^{3} T^{2} \)
83 \( 1 + p^{3} T^{2} \)
89 \( 1 + p^{3} T^{2} \)
97 \( 1 + 1330 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.584050236184648241912289015518, −7.923691641783472199781348495558, −6.78672909301721518149033887856, −6.18720721635831425964345185466, −5.40816605755441490751015948002, −4.14984695869246579901456545077, −3.67019387035805425678120614093, −2.32800845535865852702276396112, −1.34516728263619274132007212632, 0, 1.34516728263619274132007212632, 2.32800845535865852702276396112, 3.67019387035805425678120614093, 4.14984695869246579901456545077, 5.40816605755441490751015948002, 6.18720721635831425964345185466, 6.78672909301721518149033887856, 7.923691641783472199781348495558, 8.584050236184648241912289015518

Graph of the $Z$-function along the critical line