Properties

Label 2-42e2-1.1-c3-0-18
Degree $2$
Conductor $1764$
Sign $1$
Analytic cond. $104.079$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82·5-s + 26·11-s + 33.9·13-s + 103.·17-s + 94.7·19-s + 148·23-s − 117·25-s + 118·29-s − 296.·31-s − 254·37-s − 91.9·41-s + 122·43-s − 308.·47-s + 170·53-s − 73.5·55-s − 304.·59-s − 608.·61-s − 96·65-s + 420·67-s − 420·71-s + 813.·73-s + 1.05e3·79-s + 1.44e3·83-s − 292·85-s + 1.02e3·89-s − 268·95-s + 315.·97-s + ⋯
L(s)  = 1  − 0.252·5-s + 0.712·11-s + 0.724·13-s + 1.47·17-s + 1.14·19-s + 1.34·23-s − 0.936·25-s + 0.755·29-s − 1.72·31-s − 1.12·37-s − 0.350·41-s + 0.432·43-s − 0.956·47-s + 0.440·53-s − 0.180·55-s − 0.670·59-s − 1.27·61-s − 0.183·65-s + 0.765·67-s − 0.702·71-s + 1.30·73-s + 1.49·79-s + 1.91·83-s − 0.372·85-s + 1.22·89-s − 0.289·95-s + 0.330·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(104.079\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.508990895\)
\(L(\frac12)\) \(\approx\) \(2.508990895\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 2.82T + 125T^{2} \)
11 \( 1 - 26T + 1.33e3T^{2} \)
13 \( 1 - 33.9T + 2.19e3T^{2} \)
17 \( 1 - 103.T + 4.91e3T^{2} \)
19 \( 1 - 94.7T + 6.85e3T^{2} \)
23 \( 1 - 148T + 1.21e4T^{2} \)
29 \( 1 - 118T + 2.43e4T^{2} \)
31 \( 1 + 296.T + 2.97e4T^{2} \)
37 \( 1 + 254T + 5.06e4T^{2} \)
41 \( 1 + 91.9T + 6.89e4T^{2} \)
43 \( 1 - 122T + 7.95e4T^{2} \)
47 \( 1 + 308.T + 1.03e5T^{2} \)
53 \( 1 - 170T + 1.48e5T^{2} \)
59 \( 1 + 304.T + 2.05e5T^{2} \)
61 \( 1 + 608.T + 2.26e5T^{2} \)
67 \( 1 - 420T + 3.00e5T^{2} \)
71 \( 1 + 420T + 3.57e5T^{2} \)
73 \( 1 - 813.T + 3.89e5T^{2} \)
79 \( 1 - 1.05e3T + 4.93e5T^{2} \)
83 \( 1 - 1.44e3T + 5.71e5T^{2} \)
89 \( 1 - 1.02e3T + 7.04e5T^{2} \)
97 \( 1 - 315.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.065985864566275333021450701743, −8.065547437942526271104764914135, −7.42026536791943421014216345588, −6.59011688994847988801252218784, −5.64395622996043579273944067524, −4.95196028376628184768375581884, −3.64811408218311711266126416946, −3.27349222165842793856606665438, −1.68821923170462686005375469496, −0.799405893773458280955515253118, 0.799405893773458280955515253118, 1.68821923170462686005375469496, 3.27349222165842793856606665438, 3.64811408218311711266126416946, 4.95196028376628184768375581884, 5.64395622996043579273944067524, 6.59011688994847988801252218784, 7.42026536791943421014216345588, 8.065547437942526271104764914135, 9.065985864566275333021450701743

Graph of the $Z$-function along the critical line