Properties

Label 2-42e2-1.1-c3-0-17
Degree $2$
Conductor $1764$
Sign $1$
Analytic cond. $104.079$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15.8·5-s − 15.8·11-s − 26·13-s − 79.3·17-s − 68·19-s − 47.6·23-s + 127.·25-s + 253.·29-s − 212·31-s + 218·37-s + 396.·41-s + 260·43-s + 412.·47-s + 476.·53-s − 252.·55-s − 285.·59-s + 322·61-s − 412.·65-s + 356·67-s + 1.12e3·71-s + 226·73-s + 440·79-s − 253.·83-s − 1.26e3·85-s + 206.·89-s − 1.07e3·95-s + 1.33e3·97-s + ⋯
L(s)  = 1  + 1.41·5-s − 0.435·11-s − 0.554·13-s − 1.13·17-s − 0.821·19-s − 0.431·23-s + 1.01·25-s + 1.62·29-s − 1.22·31-s + 0.968·37-s + 1.51·41-s + 0.922·43-s + 1.28·47-s + 1.23·53-s − 0.617·55-s − 0.630·59-s + 0.675·61-s − 0.787·65-s + 0.649·67-s + 1.88·71-s + 0.362·73-s + 0.626·79-s − 0.335·83-s − 1.60·85-s + 0.245·89-s − 1.16·95-s + 1.39·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(104.079\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.589991993\)
\(L(\frac12)\) \(\approx\) \(2.589991993\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 15.8T + 125T^{2} \)
11 \( 1 + 15.8T + 1.33e3T^{2} \)
13 \( 1 + 26T + 2.19e3T^{2} \)
17 \( 1 + 79.3T + 4.91e3T^{2} \)
19 \( 1 + 68T + 6.85e3T^{2} \)
23 \( 1 + 47.6T + 1.21e4T^{2} \)
29 \( 1 - 253.T + 2.43e4T^{2} \)
31 \( 1 + 212T + 2.97e4T^{2} \)
37 \( 1 - 218T + 5.06e4T^{2} \)
41 \( 1 - 396.T + 6.89e4T^{2} \)
43 \( 1 - 260T + 7.95e4T^{2} \)
47 \( 1 - 412.T + 1.03e5T^{2} \)
53 \( 1 - 476.T + 1.48e5T^{2} \)
59 \( 1 + 285.T + 2.05e5T^{2} \)
61 \( 1 - 322T + 2.26e5T^{2} \)
67 \( 1 - 356T + 3.00e5T^{2} \)
71 \( 1 - 1.12e3T + 3.57e5T^{2} \)
73 \( 1 - 226T + 3.89e5T^{2} \)
79 \( 1 - 440T + 4.93e5T^{2} \)
83 \( 1 + 253.T + 5.71e5T^{2} \)
89 \( 1 - 206.T + 7.04e5T^{2} \)
97 \( 1 - 1.33e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.121133241477848039146635896839, −8.248813656672527165532406525657, −7.25697985233830755910318280207, −6.39807778125663354264012064540, −5.80698638779131516304585397187, −4.92544636211797972646425303001, −4.05599713452408346892322793738, −2.46540358907762550955194191817, −2.21691759668632263475300582672, −0.74287512877540534448815339500, 0.74287512877540534448815339500, 2.21691759668632263475300582672, 2.46540358907762550955194191817, 4.05599713452408346892322793738, 4.92544636211797972646425303001, 5.80698638779131516304585397187, 6.39807778125663354264012064540, 7.25697985233830755910318280207, 8.248813656672527165532406525657, 9.121133241477848039146635896839

Graph of the $Z$-function along the critical line