Properties

Label 2-42e2-1.1-c3-0-1
Degree $2$
Conductor $1764$
Sign $1$
Analytic cond. $104.079$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.5·5-s − 55.2·11-s − 83.5·13-s − 95.2·17-s − 83.5·19-s − 165.·23-s − 12.9·25-s + 110.·29-s + 83.5·31-s + 78·37-s − 412.·41-s + 148·43-s + 465.·47-s + 110.·53-s + 584.·55-s − 550.·59-s + 584.·61-s + 883.·65-s − 260·67-s − 718.·71-s − 668.·73-s + 664·79-s − 126.·83-s + 1.00e3·85-s − 878.·89-s + 883.·95-s − 1.16e3·97-s + ⋯
L(s)  = 1  − 0.946·5-s − 1.51·11-s − 1.78·13-s − 1.35·17-s − 1.00·19-s − 1.50·23-s − 0.103·25-s + 0.707·29-s + 0.483·31-s + 0.346·37-s − 1.57·41-s + 0.524·43-s + 1.44·47-s + 0.286·53-s + 1.43·55-s − 1.21·59-s + 1.22·61-s + 1.68·65-s − 0.474·67-s − 1.20·71-s − 1.07·73-s + 0.945·79-s − 0.167·83-s + 1.28·85-s − 1.04·89-s + 0.954·95-s − 1.22·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1764\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(104.079\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1764,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.04515378577\)
\(L(\frac12)\) \(\approx\) \(0.04515378577\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 10.5T + 125T^{2} \)
11 \( 1 + 55.2T + 1.33e3T^{2} \)
13 \( 1 + 83.5T + 2.19e3T^{2} \)
17 \( 1 + 95.2T + 4.91e3T^{2} \)
19 \( 1 + 83.5T + 6.85e3T^{2} \)
23 \( 1 + 165.T + 1.21e4T^{2} \)
29 \( 1 - 110.T + 2.43e4T^{2} \)
31 \( 1 - 83.5T + 2.97e4T^{2} \)
37 \( 1 - 78T + 5.06e4T^{2} \)
41 \( 1 + 412.T + 6.89e4T^{2} \)
43 \( 1 - 148T + 7.95e4T^{2} \)
47 \( 1 - 465.T + 1.03e5T^{2} \)
53 \( 1 - 110.T + 1.48e5T^{2} \)
59 \( 1 + 550.T + 2.05e5T^{2} \)
61 \( 1 - 584.T + 2.26e5T^{2} \)
67 \( 1 + 260T + 3.00e5T^{2} \)
71 \( 1 + 718.T + 3.57e5T^{2} \)
73 \( 1 + 668.T + 3.89e5T^{2} \)
79 \( 1 - 664T + 4.93e5T^{2} \)
83 \( 1 + 126.T + 5.71e5T^{2} \)
89 \( 1 + 878.T + 7.04e5T^{2} \)
97 \( 1 + 1.16e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.737356467249622492359582750939, −8.064850213366088630906990168370, −7.49083756455809239200126436667, −6.70538494391781401515439459511, −5.62172487926904815225807346761, −4.63757819302238428076849174235, −4.17360186138485753276592018908, −2.75788660096163359864815712602, −2.16237842344201791916514034521, −0.091767982609116740211231269585, 0.091767982609116740211231269585, 2.16237842344201791916514034521, 2.75788660096163359864815712602, 4.17360186138485753276592018908, 4.63757819302238428076849174235, 5.62172487926904815225807346761, 6.70538494391781401515439459511, 7.49083756455809239200126436667, 8.064850213366088630906990168370, 8.737356467249622492359582750939

Graph of the $Z$-function along the critical line