Properties

Label 2-429-429.38-c0-0-1
Degree $2$
Conductor $429$
Sign $0.624 - 0.781i$
Analytic cond. $0.214098$
Root an. cond. $0.462708$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.190 + 0.587i)2-s + (−0.809 − 0.587i)3-s + (0.5 − 0.363i)4-s + (−0.5 + 1.53i)5-s + (0.190 − 0.587i)6-s + (0.809 + 0.587i)8-s + (0.309 + 0.951i)9-s − 10-s + (0.309 − 0.951i)11-s − 0.618·12-s + (0.309 + 0.951i)13-s + (1.30 − 0.951i)15-s + (−0.5 + 0.363i)18-s + (0.309 + 0.951i)20-s + 0.618·22-s + ⋯
L(s)  = 1  + (0.190 + 0.587i)2-s + (−0.809 − 0.587i)3-s + (0.5 − 0.363i)4-s + (−0.5 + 1.53i)5-s + (0.190 − 0.587i)6-s + (0.809 + 0.587i)8-s + (0.309 + 0.951i)9-s − 10-s + (0.309 − 0.951i)11-s − 0.618·12-s + (0.309 + 0.951i)13-s + (1.30 − 0.951i)15-s + (−0.5 + 0.363i)18-s + (0.309 + 0.951i)20-s + 0.618·22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 429 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 429 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(429\)    =    \(3 \cdot 11 \cdot 13\)
Sign: $0.624 - 0.781i$
Analytic conductor: \(0.214098\)
Root analytic conductor: \(0.462708\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{429} (38, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 429,\ (\ :0),\ 0.624 - 0.781i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8149622154\)
\(L(\frac12)\) \(\approx\) \(0.8149622154\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.809 + 0.587i)T \)
11 \( 1 + (-0.309 + 0.951i)T \)
13 \( 1 + (-0.309 - 0.951i)T \)
good2 \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \)
5 \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \)
7 \( 1 + (-0.309 + 0.951i)T^{2} \)
17 \( 1 + (0.809 + 0.587i)T^{2} \)
19 \( 1 + (-0.309 - 0.951i)T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 + (-0.309 + 0.951i)T^{2} \)
31 \( 1 + (0.809 - 0.587i)T^{2} \)
37 \( 1 + (-0.309 + 0.951i)T^{2} \)
41 \( 1 + (1.61 + 1.17i)T + (0.309 + 0.951i)T^{2} \)
43 \( 1 + 1.61T + T^{2} \)
47 \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \)
53 \( 1 + (0.809 - 0.587i)T^{2} \)
59 \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \)
61 \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 + (-0.618 + 1.90i)T + (-0.809 - 0.587i)T^{2} \)
73 \( 1 + (-0.309 + 0.951i)T^{2} \)
79 \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \)
83 \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \)
89 \( 1 - 2T + T^{2} \)
97 \( 1 + (0.809 - 0.587i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44744936598795423944576412280, −10.85947346023144840574431274546, −10.13396247604213514838842254384, −8.400221999472086400211449121471, −7.38570062039650306826004057530, −6.65313038405446641811858961413, −6.29271951071475403497349154053, −5.11629181579823547423922002679, −3.53248881238974829340002511082, −1.99052986627873227732121112811, 1.38013621677416743760713506671, 3.42983081131269022521373024226, 4.44456152672402843404268225822, 5.12491469255034135623183916362, 6.45505229696462178884846594522, 7.64481445688899107174014304403, 8.603106852911826431329849482372, 9.719620942619524270374830995647, 10.43963062992821392181886341848, 11.57369509950983973360555734547

Graph of the $Z$-function along the critical line