Properties

Label 2-4275-1.1-c1-0-108
Degree $2$
Conductor $4275$
Sign $-1$
Analytic cond. $34.1360$
Root an. cond. $5.84260$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.246·2-s − 1.93·4-s + 1.69·7-s − 0.972·8-s + 0.911·11-s + 1.55·13-s + 0.417·14-s + 3.63·16-s − 5.29·17-s − 19-s + 0.225·22-s − 4.24·23-s + 0.384·26-s − 3.28·28-s − 5.00·29-s + 1.82·31-s + 2.84·32-s − 1.30·34-s + 6.29·37-s − 0.246·38-s − 4.18·41-s + 7.31·43-s − 1.76·44-s − 1.04·46-s + 2.04·47-s − 4.13·49-s − 3.01·52-s + ⋯
L(s)  = 1  + 0.174·2-s − 0.969·4-s + 0.639·7-s − 0.343·8-s + 0.274·11-s + 0.431·13-s + 0.111·14-s + 0.909·16-s − 1.28·17-s − 0.229·19-s + 0.0480·22-s − 0.885·23-s + 0.0753·26-s − 0.620·28-s − 0.930·29-s + 0.328·31-s + 0.502·32-s − 0.224·34-s + 1.03·37-s − 0.0400·38-s − 0.652·41-s + 1.11·43-s − 0.266·44-s − 0.154·46-s + 0.298·47-s − 0.591·49-s − 0.418·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4275 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4275\)    =    \(3^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(34.1360\)
Root analytic conductor: \(5.84260\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4275,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 0.246T + 2T^{2} \)
7 \( 1 - 1.69T + 7T^{2} \)
11 \( 1 - 0.911T + 11T^{2} \)
13 \( 1 - 1.55T + 13T^{2} \)
17 \( 1 + 5.29T + 17T^{2} \)
23 \( 1 + 4.24T + 23T^{2} \)
29 \( 1 + 5.00T + 29T^{2} \)
31 \( 1 - 1.82T + 31T^{2} \)
37 \( 1 - 6.29T + 37T^{2} \)
41 \( 1 + 4.18T + 41T^{2} \)
43 \( 1 - 7.31T + 43T^{2} \)
47 \( 1 - 2.04T + 47T^{2} \)
53 \( 1 - 2.70T + 53T^{2} \)
59 \( 1 + 9.87T + 59T^{2} \)
61 \( 1 - 0.542T + 61T^{2} \)
67 \( 1 + 13.9T + 67T^{2} \)
71 \( 1 - 12.8T + 71T^{2} \)
73 \( 1 + 2.80T + 73T^{2} \)
79 \( 1 - 1.59T + 79T^{2} \)
83 \( 1 + 12.2T + 83T^{2} \)
89 \( 1 + 2.91T + 89T^{2} \)
97 \( 1 - 1.55T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.107194304989024981418223306551, −7.46082487381810938075252772941, −6.36085002128734901545080700788, −5.82015000606447604151477099607, −4.85016213006715481697956828238, −4.30285423089235161442316339831, −3.64630473049700540338608358491, −2.43657219240356756124696537364, −1.35707431756539852706439668830, 0, 1.35707431756539852706439668830, 2.43657219240356756124696537364, 3.64630473049700540338608358491, 4.30285423089235161442316339831, 4.85016213006715481697956828238, 5.82015000606447604151477099607, 6.36085002128734901545080700788, 7.46082487381810938075252772941, 8.107194304989024981418223306551

Graph of the $Z$-function along the critical line