L(s) = 1 | + 0.246·2-s − 1.93·4-s + 1.69·7-s − 0.972·8-s + 0.911·11-s + 1.55·13-s + 0.417·14-s + 3.63·16-s − 5.29·17-s − 19-s + 0.225·22-s − 4.24·23-s + 0.384·26-s − 3.28·28-s − 5.00·29-s + 1.82·31-s + 2.84·32-s − 1.30·34-s + 6.29·37-s − 0.246·38-s − 4.18·41-s + 7.31·43-s − 1.76·44-s − 1.04·46-s + 2.04·47-s − 4.13·49-s − 3.01·52-s + ⋯ |
L(s) = 1 | + 0.174·2-s − 0.969·4-s + 0.639·7-s − 0.343·8-s + 0.274·11-s + 0.431·13-s + 0.111·14-s + 0.909·16-s − 1.28·17-s − 0.229·19-s + 0.0480·22-s − 0.885·23-s + 0.0753·26-s − 0.620·28-s − 0.930·29-s + 0.328·31-s + 0.502·32-s − 0.224·34-s + 1.03·37-s − 0.0400·38-s − 0.652·41-s + 1.11·43-s − 0.266·44-s − 0.154·46-s + 0.298·47-s − 0.591·49-s − 0.418·52-s + ⋯ |
Λ(s)=(=(4275s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4275s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 2 | 1−0.246T+2T2 |
| 7 | 1−1.69T+7T2 |
| 11 | 1−0.911T+11T2 |
| 13 | 1−1.55T+13T2 |
| 17 | 1+5.29T+17T2 |
| 23 | 1+4.24T+23T2 |
| 29 | 1+5.00T+29T2 |
| 31 | 1−1.82T+31T2 |
| 37 | 1−6.29T+37T2 |
| 41 | 1+4.18T+41T2 |
| 43 | 1−7.31T+43T2 |
| 47 | 1−2.04T+47T2 |
| 53 | 1−2.70T+53T2 |
| 59 | 1+9.87T+59T2 |
| 61 | 1−0.542T+61T2 |
| 67 | 1+13.9T+67T2 |
| 71 | 1−12.8T+71T2 |
| 73 | 1+2.80T+73T2 |
| 79 | 1−1.59T+79T2 |
| 83 | 1+12.2T+83T2 |
| 89 | 1+2.91T+89T2 |
| 97 | 1−1.55T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.107194304989024981418223306551, −7.46082487381810938075252772941, −6.36085002128734901545080700788, −5.82015000606447604151477099607, −4.85016213006715481697956828238, −4.30285423089235161442316339831, −3.64630473049700540338608358491, −2.43657219240356756124696537364, −1.35707431756539852706439668830, 0,
1.35707431756539852706439668830, 2.43657219240356756124696537364, 3.64630473049700540338608358491, 4.30285423089235161442316339831, 4.85016213006715481697956828238, 5.82015000606447604151477099607, 6.36085002128734901545080700788, 7.46082487381810938075252772941, 8.107194304989024981418223306551