Properties

Label 2-425-17.13-c1-0-21
Degree $2$
Conductor $425$
Sign $0.615 + 0.788i$
Analytic cond. $3.39364$
Root an. cond. $1.84218$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + (1 + i)3-s + 4-s + (1 − i)6-s + (3 − 3i)7-s − 3i·8-s i·9-s + (−3 + 3i)11-s + (1 + i)12-s + (−3 − 3i)14-s − 16-s + (−4 − i)17-s − 18-s + 6i·19-s + 6·21-s + (3 + 3i)22-s + ⋯
L(s)  = 1  − 0.707i·2-s + (0.577 + 0.577i)3-s + 0.5·4-s + (0.408 − 0.408i)6-s + (1.13 − 1.13i)7-s − 1.06i·8-s − 0.333i·9-s + (−0.904 + 0.904i)11-s + (0.288 + 0.288i)12-s + (−0.801 − 0.801i)14-s − 0.250·16-s + (−0.970 − 0.242i)17-s − 0.235·18-s + 1.37i·19-s + 1.30·21-s + (0.639 + 0.639i)22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $0.615 + 0.788i$
Analytic conductor: \(3.39364\)
Root analytic conductor: \(1.84218\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{425} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 425,\ (\ :1/2),\ 0.615 + 0.788i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.82680 - 0.891350i\)
\(L(\frac12)\) \(\approx\) \(1.82680 - 0.891350i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 + (4 + i)T \)
good2 \( 1 + iT - 2T^{2} \)
3 \( 1 + (-1 - i)T + 3iT^{2} \)
7 \( 1 + (-3 + 3i)T - 7iT^{2} \)
11 \( 1 + (3 - 3i)T - 11iT^{2} \)
13 \( 1 + 13T^{2} \)
19 \( 1 - 6iT - 19T^{2} \)
23 \( 1 + (-1 + i)T - 23iT^{2} \)
29 \( 1 + (-3 - 3i)T + 29iT^{2} \)
31 \( 1 + (1 + i)T + 31iT^{2} \)
37 \( 1 + (-3 - 3i)T + 37iT^{2} \)
41 \( 1 + (3 - 3i)T - 41iT^{2} \)
43 \( 1 - 12iT - 43T^{2} \)
47 \( 1 + 2T + 47T^{2} \)
53 \( 1 + 2iT - 53T^{2} \)
59 \( 1 - 6iT - 59T^{2} \)
61 \( 1 + (-1 + i)T - 61iT^{2} \)
67 \( 1 + 6T + 67T^{2} \)
71 \( 1 + (-3 - 3i)T + 71iT^{2} \)
73 \( 1 + (3 + 3i)T + 73iT^{2} \)
79 \( 1 + (-7 + 7i)T - 79iT^{2} \)
83 \( 1 - 4iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + (-3 - 3i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88645862620098036861847931077, −10.26654997819384697253324179092, −9.615468957415970625998706701394, −8.270817963199271735754877227321, −7.50388973240751665204042357925, −6.49956799124622307315373326011, −4.76534627859259058160597149231, −4.02133466765917442898045466286, −2.80570019809810177639246574631, −1.48583317434370583270727717089, 2.07086679002784255870595377740, 2.71197284432485808348611293621, 4.93285456194737219430732325573, 5.61144542850559222660657547199, 6.78889168013275970491057941218, 7.71397706421828913638312442505, 8.434368629218127139620358629963, 8.873514114358976013800230556552, 10.77482184493561659314772457450, 11.19893813434124491607922070241

Graph of the $Z$-function along the critical line