L(s) = 1 | − 0.783i·2-s + (−0.385 − 0.385i)3-s + 1.38·4-s + (−0.301 + 0.301i)6-s + (0.840 − 0.840i)7-s − 2.65i·8-s − 2.70i·9-s + (−1.80 + 1.80i)11-s + (−0.534 − 0.534i)12-s + 0.368·13-s + (−0.658 − 0.658i)14-s + 0.693·16-s + (2.46 + 3.30i)17-s − 2.11·18-s − 6.61i·19-s + ⋯ |
L(s) = 1 | − 0.554i·2-s + (−0.222 − 0.222i)3-s + 0.693·4-s + (−0.123 + 0.123i)6-s + (0.317 − 0.317i)7-s − 0.937i·8-s − 0.901i·9-s + (−0.544 + 0.544i)11-s + (−0.154 − 0.154i)12-s + 0.102·13-s + (−0.175 − 0.175i)14-s + 0.173·16-s + (0.597 + 0.801i)17-s − 0.499·18-s − 1.51i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0219 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0219 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.08555 - 1.10970i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.08555 - 1.10970i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-2.46 - 3.30i)T \) |
good | 2 | \( 1 + 0.783iT - 2T^{2} \) |
| 3 | \( 1 + (0.385 + 0.385i)T + 3iT^{2} \) |
| 7 | \( 1 + (-0.840 + 0.840i)T - 7iT^{2} \) |
| 11 | \( 1 + (1.80 - 1.80i)T - 11iT^{2} \) |
| 13 | \( 1 - 0.368T + 13T^{2} \) |
| 19 | \( 1 + 6.61iT - 19T^{2} \) |
| 23 | \( 1 + (-2.73 + 2.73i)T - 23iT^{2} \) |
| 29 | \( 1 + (1.63 + 1.63i)T + 29iT^{2} \) |
| 31 | \( 1 + (-4.68 - 4.68i)T + 31iT^{2} \) |
| 37 | \( 1 + (2.24 + 2.24i)T + 37iT^{2} \) |
| 41 | \( 1 + (5.16 - 5.16i)T - 41iT^{2} \) |
| 43 | \( 1 + 6.82iT - 43T^{2} \) |
| 47 | \( 1 + 7.80T + 47T^{2} \) |
| 53 | \( 1 - 8.01iT - 53T^{2} \) |
| 59 | \( 1 - 5.22iT - 59T^{2} \) |
| 61 | \( 1 + (-5.74 + 5.74i)T - 61iT^{2} \) |
| 67 | \( 1 - 7.94T + 67T^{2} \) |
| 71 | \( 1 + (-8.40 - 8.40i)T + 71iT^{2} \) |
| 73 | \( 1 + (-10.4 - 10.4i)T + 73iT^{2} \) |
| 79 | \( 1 + (-0.575 + 0.575i)T - 79iT^{2} \) |
| 83 | \( 1 - 3.99iT - 83T^{2} \) |
| 89 | \( 1 - 9.14T + 89T^{2} \) |
| 97 | \( 1 + (-4.99 - 4.99i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99137300005678875407177417234, −10.29032257932575103978848661925, −9.355572321864107902113411458310, −8.139397456595414237070999884767, −7.02922507265105095520130798789, −6.47253935729664095642078996556, −5.10841218424001226634570033760, −3.76479215707767962700575058585, −2.57896880192536085953765257936, −1.10099095083585080560776985323,
1.94812258682500143143470157713, 3.28986629576383943473126540518, 5.08962590047583952874909559659, 5.57995521522251503427073212933, 6.71279488658729974951335264898, 7.920973380947697486555660155803, 8.179500249958190327748720533387, 9.729398502388669890894842454513, 10.60493084873993249200663329453, 11.38927345044991279380759450901