L(s) = 1 | + (0.116 − 0.280i)2-s + (4.44 + 2.97i)3-s + (2.76 + 2.76i)4-s + (1.34 − 0.901i)6-s + (2.10 + 0.418i)7-s + (2.21 − 0.918i)8-s + (7.49 + 18.0i)9-s + (−3.66 − 5.49i)11-s + (4.07 + 20.4i)12-s + (−9.67 + 9.67i)13-s + (0.361 − 0.541i)14-s + 14.9i·16-s + (0.398 − 16.9i)17-s + 5.94·18-s + (4.71 − 11.3i)19-s + ⋯ |
L(s) = 1 | + (0.0581 − 0.140i)2-s + (1.48 + 0.990i)3-s + (0.690 + 0.690i)4-s + (0.224 − 0.150i)6-s + (0.300 + 0.0597i)7-s + (0.277 − 0.114i)8-s + (0.832 + 2.01i)9-s + (−0.333 − 0.499i)11-s + (0.339 + 1.70i)12-s + (−0.744 + 0.744i)13-s + (0.0258 − 0.0386i)14-s + 0.931i·16-s + (0.0234 − 0.999i)17-s + 0.330·18-s + (0.248 − 0.598i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.260 - 0.965i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.260 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.68664 + 2.05696i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.68664 + 2.05696i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-0.398 + 16.9i)T \) |
good | 2 | \( 1 + (-0.116 + 0.280i)T + (-2.82 - 2.82i)T^{2} \) |
| 3 | \( 1 + (-4.44 - 2.97i)T + (3.44 + 8.31i)T^{2} \) |
| 7 | \( 1 + (-2.10 - 0.418i)T + (45.2 + 18.7i)T^{2} \) |
| 11 | \( 1 + (3.66 + 5.49i)T + (-46.3 + 111. i)T^{2} \) |
| 13 | \( 1 + (9.67 - 9.67i)T - 169iT^{2} \) |
| 19 | \( 1 + (-4.71 + 11.3i)T + (-255. - 255. i)T^{2} \) |
| 23 | \( 1 + (1.56 - 1.04i)T + (202. - 488. i)T^{2} \) |
| 29 | \( 1 + (5.73 + 28.8i)T + (-776. + 321. i)T^{2} \) |
| 31 | \( 1 + (-27.7 + 41.5i)T + (-367. - 887. i)T^{2} \) |
| 37 | \( 1 + (-39.7 - 26.5i)T + (523. + 1.26e3i)T^{2} \) |
| 41 | \( 1 + (74.0 + 14.7i)T + (1.55e3 + 643. i)T^{2} \) |
| 43 | \( 1 + (-12.5 - 30.4i)T + (-1.30e3 + 1.30e3i)T^{2} \) |
| 47 | \( 1 + (24.9 - 24.9i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-10.3 + 25.0i)T + (-1.98e3 - 1.98e3i)T^{2} \) |
| 59 | \( 1 + (-69.9 + 28.9i)T + (2.46e3 - 2.46e3i)T^{2} \) |
| 61 | \( 1 + (-11.8 + 59.6i)T + (-3.43e3 - 1.42e3i)T^{2} \) |
| 67 | \( 1 - 88.5iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (-26.4 - 17.6i)T + (1.92e3 + 4.65e3i)T^{2} \) |
| 73 | \( 1 + (42.8 - 8.52i)T + (4.92e3 - 2.03e3i)T^{2} \) |
| 79 | \( 1 + (-23.2 - 34.7i)T + (-2.38e3 + 5.76e3i)T^{2} \) |
| 83 | \( 1 + (-87.2 - 36.1i)T + (4.87e3 + 4.87e3i)T^{2} \) |
| 89 | \( 1 + (-62.4 - 62.4i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (1.86 + 9.38i)T + (-8.69e3 + 3.60e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.25749591582068085043886403465, −9.967985787526397418860653152267, −9.452038486517666610217380548115, −8.292485438366261942992000810422, −7.84436420175772026024972156642, −6.74746640988175330835222599330, −4.95280828149080866396557660976, −4.04105687690683327266502026369, −2.92413273498301134131678261111, −2.26391725585698459785470590767,
1.34847324862072040566129567342, 2.27806073109639831795867067133, 3.35666896923421490333847462657, 5.04778918306446003494089434967, 6.34096468801992767935953812833, 7.25257447563716432206533965606, 7.86345176594958611037680116365, 8.718692392615012726139188080639, 9.915518946421370084712627007997, 10.52187467768912954927364428444