Properties

Label 2-425-1.1-c3-0-60
Degree $2$
Conductor $425$
Sign $-1$
Analytic cond. $25.0758$
Root an. cond. $5.00757$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 7·3-s + 4-s − 21·6-s + 22·7-s + 21·8-s + 22·9-s − 64·11-s + 7·12-s − 73·13-s − 66·14-s − 71·16-s + 17·17-s − 66·18-s − 49·19-s + 154·21-s + 192·22-s − 110·23-s + 147·24-s + 219·26-s − 35·27-s + 22·28-s + 155·29-s − 197·31-s + 45·32-s − 448·33-s − 51·34-s + ⋯
L(s)  = 1  − 1.06·2-s + 1.34·3-s + 1/8·4-s − 1.42·6-s + 1.18·7-s + 0.928·8-s + 0.814·9-s − 1.75·11-s + 0.168·12-s − 1.55·13-s − 1.25·14-s − 1.10·16-s + 0.242·17-s − 0.864·18-s − 0.591·19-s + 1.60·21-s + 1.86·22-s − 0.997·23-s + 1.25·24-s + 1.65·26-s − 0.249·27-s + 0.148·28-s + 0.992·29-s − 1.14·31-s + 0.248·32-s − 2.36·33-s − 0.257·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(25.0758\)
Root analytic conductor: \(5.00757\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 425,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 - p T \)
good2 \( 1 + 3 T + p^{3} T^{2} \)
3 \( 1 - 7 T + p^{3} T^{2} \)
7 \( 1 - 22 T + p^{3} T^{2} \)
11 \( 1 + 64 T + p^{3} T^{2} \)
13 \( 1 + 73 T + p^{3} T^{2} \)
19 \( 1 + 49 T + p^{3} T^{2} \)
23 \( 1 + 110 T + p^{3} T^{2} \)
29 \( 1 - 155 T + p^{3} T^{2} \)
31 \( 1 + 197 T + p^{3} T^{2} \)
37 \( 1 - 372 T + p^{3} T^{2} \)
41 \( 1 + 262 T + p^{3} T^{2} \)
43 \( 1 + 6 p T + p^{3} T^{2} \)
47 \( 1 - 13 T + p^{3} T^{2} \)
53 \( 1 - 653 T + p^{3} T^{2} \)
59 \( 1 + 333 T + p^{3} T^{2} \)
61 \( 1 + 355 T + p^{3} T^{2} \)
67 \( 1 + 814 T + p^{3} T^{2} \)
71 \( 1 - 47 T + p^{3} T^{2} \)
73 \( 1 - 437 T + p^{3} T^{2} \)
79 \( 1 + 384 T + p^{3} T^{2} \)
83 \( 1 - 736 T + p^{3} T^{2} \)
89 \( 1 - 511 T + p^{3} T^{2} \)
97 \( 1 + 537 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10750097761590647616916062583, −9.301041782307052843828931551690, −8.228856060749355784707420372375, −7.998304267290896809843369148345, −7.31278536293733836697034998003, −5.24989406333725030441642811869, −4.38325619236845914047215161386, −2.66393276515255032970062219503, −1.87728159533733311120663681774, 0, 1.87728159533733311120663681774, 2.66393276515255032970062219503, 4.38325619236845914047215161386, 5.24989406333725030441642811869, 7.31278536293733836697034998003, 7.998304267290896809843369148345, 8.228856060749355784707420372375, 9.301041782307052843828931551690, 10.10750097761590647616916062583

Graph of the $Z$-function along the critical line